Cho a,b,c là các số thực thoả mãn \(\frac{abc}{a+b+c}=3\) . Tìm giá trị nhỏ nhất của biểu thức:
\(M=\frac{3}{a^2+5}+\frac{5}{b^2+3}+\frac{3}{c^2+3}\)
Cho các số thực dương a,b,c. Tìm giá trị nhỏ nhất của biểu thức;
\(Q=\frac{a^3+2}{ab+1}+\frac{b^3+2}{bc+1}+\frac{c^3+2}{ca+1}\)
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
Tìm giá trị lớn nhất(hoặc nhỏ nhất)của các biểu thức sau
1)A=x2-6x+11
2)B=2x2+10x-1
3)C=5x-x2
cho 2 số dương a,b thỏa mãn a+1/b<=1. tính giá trị nhỏ nhất củ biểu thức S-a/b+b/a
1:Tìm GTNN x^2+y^2 biết :(x^2-y^2+1)+4x^2y^2-x^2-y^2=0
2:Cho a nhỏ hơn hoặc =a,b,c nhỏ hơn hoặc =1.Tìm GTNN,GTLN của biểu thức:P=a+b+c-ab-bc-ca
3:cho các số thực nguyên thỏa mãn điều kiện :x^2+y^2+z^2 nhỏ hơn hoặc = 27.Tìm giá trị nhỏ nhất ,GTLN x+y+z+xy+yz+zx
4: cho x,y dương thỏa mãn dk: x+y=1.Tìm GTNN:M=(x+1/x)+(y+1/y)
Cho: \(x;y;z\) là các số thực thoả mãn điều kiện: \(\frac{3}{2}x^2+y^2+z^2+yz=1\)
Tìm giá trị lớn nhất của: \(A=x+y+z\)
Tìm giá trị lớn nhất của các biểu thức sau:
a. A=4 - x^2 + 2x
b. B=4x - X^2
Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất ( nếu có ) của các đa thức sau:
a) 4x2 - 4x + 3
b) -x2 + 2x - 3