Ta có: \(a^2+4b=b^2+4a\) <=> \(a^2-b^2-4a+4b=0\)
<=> \(\left(a-b\right)\left(a+b\right)-4\left(a-b\right)=0\)
<=> \(\left(a-b\right)\left(a+b-4\right)=0\)
<=> \(\orbr{\begin{cases}a=b\left(loại\right)\\a+b=4\end{cases}}\)(vì a,b phân biệt)
a ) => S = a + b = 4
b) Ta có: \(a^2+4b=7\) <=> \(a\left(a+b\right)-ab+4b=7\)
<=> \(4a-ab+4b=7\) <=> \(4\left(a+b\right)-7=ab\) <=> \(ab=4.4-7=9\)
Do đó: Q = a3 + b3 = (a + b)(a2 - ab + b2) = (a + b)3 - 3ab(a + b) = 43 - 3.9.4 = -44