Cho các số phức z 1 = 1 + 3 i , z 2 = - 5 - 3 i Tìm điểm M (x; y) biểu diễn số phức z3, biết rằng trong mặt phẳng phức điểm M nằm trên đường thẳng x - 2y + 1 = 0 và mô đun số phức w = 3 z 3 - z 2 - 2 z 1 đạt giá trị nhỏ nhất.
Cho z là số phức thay đổi thỏa mãn ( 1 + i ) z + 2 - i = 4 và M(x,y) là điểm biểu diễn cho z trong mặt phẳng phức. Tìm giá trị lớn nhất của biểu thức T = x + y + 3
A. T = 4 + 2 2
B. 8
C. 4
D. 4 2
Cho số phức z thỏa mãn z . z = 13 Biết M là điểm biểu diễn số phức z và M thuộc đường thẳng y = -3 nằm trong góc phần tư thứ ba trên mặt phẳng Oxyz. Khi đó môđun của số phức w = z - 3 + 15 i bằng bao nhiêu?
Cho số phức thỏa mãn z - i = z - 1 + 2 i . Tập hợp điểm biểu diễn số phức w = (2 - i) z +1 trên mặt phẳng phức là một đường thẳng. Phương trình của đường thẳng đó là
Tìm số phức z biết rằng điểm biểu diễn của z nằm trên đường tròn tâm O bán kính bằng 1 và nằm trên đường thẳng Tìm số phức z biết rằng điểm biểu diễn của z nằm trên đường tròn tâm O bán kính bằng 1 và nằm trên đường thẳng x + y = 2
Cho số phức z thỏa mãn |z| = 1 m 2 + 2m, trong đó m là số thực dương tùy ý. Biết rằng với mỗi m, tập hợp các điểm biểu diễn số phức w = (2i+1)(i+ z ¯ )-5+3i là một đường tròn bán kính r. Tìm giá trị nhỏ nhất của r
A . 3 2
B . 2 3
C . 3 5
D . 5 3
z = -1 + i được biểu diễn bởi điểm M trong mặt phẳng Oxy. Biết điểm M' biểu diễn số phức w và M’ đối xứng với M qua đường thẳng: ∆ : x-y+1 = 0. Tìm w.
A. w = 0
B. w = 1-i
C. w = 1+i
D. w = -2+2i
Cho số phức z thỏa mãn |z - 3 - 4i| = 5 . Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = | z + 2 | 2 - | z - 1 | 2 . Tính mô đun của số phức ω = M + mi
A. | ω | = 1258
B. | ω | = 3 137
C. | ω | = 2 134
D. | ω | = 2 309
Cho số phức z thay đổi hoàn toàn thỏa mãn: |z-i| = |z-1+2i|. Tập hợp các điểm trên mặt phẳng tọa độ biểu diễn số phức w thỏa mãn: w = (2-i)z+1 là một đường thẳng. Viết phương trình đường thẳng đó.
A. -x + 7y + 9 = 0
B. x + 7y - 9 = 0
C. x + 7y + 9 = 0
D. x - 7y + 9 = 0