Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
oOo Thiếu gia ác ma đừng...

   Cho các số nguyên dương a;b;c nguyên tố cùng nhau thoả mãn:

(a+b)c=ab . Chứng minh rằng a+b là số chính phương .

Kiệt Nguyễn
10 tháng 6 2020 lúc 21:50

Theo giả thiết, ta có: \(\left(a+b\right)c=ab\Leftrightarrow c^2=ab-ac-bc+c^2\)

\(\Leftrightarrow c^2=a\left(b-c\right)-c\left(b-c\right)\Leftrightarrow c^2=\left(a-c\right)\left(b-c\right)\)(1)

Đặt \(\left(a-c;b-c\right)=d\). Khi đó thì \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\left(a-c\right)\left(b-c\right)⋮d^2\)(2)

Từ (1) và (2) suy ra \(c^2⋮d^2\Leftrightarrow c⋮d\). Mặt khác \(\hept{\begin{cases}a-c⋮d\\b-c⋮d\end{cases}}\Rightarrow\hept{\begin{cases}a⋮d\\b⋮d\end{cases}}\)

Suy ra được: \(\left(a,b,c\right)=d\)mà a,b,c nguyên tố cùng nhau nên d = 1

Vậy thì \(\left(a-c;b-c\right)=1\)

Mà \(\left(a-c\right)\left(b-c\right)=c^2\)nên tồn tại hai số nguyên dương m, n sao cho \(\hept{\begin{cases}a-c=m^2\\b-c=n^2\end{cases}}\Rightarrow c^2=\left(mn\right)^2\Rightarrow c=mn\)(do c, m, n nguyên dương)

Khi đó \(a+b=\left(a-c\right)+\left(b-c\right)+2c\)

\(=m^2+n^2+2mn=\left(m+n\right)^2\)(là số chính phương)

Vậy a + b là số chính phương (đpcm)

Khách vãng lai đã xóa

Các câu hỏi tương tự
FallenCelestial
Xem chi tiết
Im Yoona
Xem chi tiết
Dương Thu Ngọc
Xem chi tiết
Thơ Nụ =))
Xem chi tiết
Lê Huỳnh
Xem chi tiết
Fresh
Xem chi tiết
Nguyễn Minh Hoàng
Xem chi tiết
Con Heo
Xem chi tiết
Con Heo
Xem chi tiết