Ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Vì \(a-2,a-1,a,a+1,a+2\) là 5 số nguyên liên tiếp nên h của chúng chia hết cho 5 và chia hết cho 2
\(=>a^5-a⋮5\)(1)
Mà a-1 và a+1 là 2 số tự nhiên liên tiếp nên h chúng chia hết cho 2
\(a^5-a⋮2\)(2)
Từ (1) và (2) suy ra \(a^5-a⋮30\)
Tương tự ta có : \(b^5-b⋮30;c^5-c⋮30\)
\(=>a^5+b^5+c^5-\left(a+b+c\right)⋮30\)
Mà \(a+b+c=2020⋮30\) nên \(a^5+b^5+c^5⋮30\)