cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
Cho các số hữu tỉ: x = a/b; y = c/d; z = a+c/b+d ( a, b, c, d \(\in\)Z; b > 0, d > 0)
Chứng minh rằng nếu x < y thì x < z < y
Bài 1: Các câu sau, câu nào đúng,câu nào sai?
a) Mọi số hữu tỉ dương đều lớn hơn 0
b) Nếu a là số hữu tỉ âm thì a là số tự nhiên
c) Nếu a là số tự nhiên thì a là số hữu tỉ âm
d) 0 là số hữu tỉ dương
Bài 2: Cho 2 số hữu tỉ a/b và c/d với b,d>0
Chứng minh: Nếu \(\frac{a}{b}< \frac{c}{d}\) thì \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
Vận dụng: Viết 2 số xen giữa 2 số hữu tỉ -1/5 và 1/5
Câu 1:Cho các số hữu tỉ x =a/b; y = c/d ; z = m/n. Biết ad-bc = 1; cn - dm = 1 ; b,d,n > 0
a) Hãy so sánh các số x,y,z
b) So sánh y với t biết t = a+m /b+n với b+n khác 0
Câu 2: Cho 6 số nguyên dương a<b<c<d<m<n
Chứng minh rằng a+c+m / a+b+c+d+m+n < 1/2.
Cho 2 số hữu tỉ a/b và c/d (với b>0, d>0)
Chứng minh rằng: nếu a/b < c/d thì a.d < b.c
1) cho 2 số hữu tỉ a/b và c/d (b>0, d>0). chứng tỏ rằng:
nếu a/b <c/d thì ad<bc
nếu ad<bc thì a/b <c/d
2) a: chứng tỏ rằng nếu a/b <c/d(b>0,d>0) thì a/b < a+c/b+d
b: hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
3) cho a,b thuộc z, b>0.so sánh 2 sô hữu tỉ a/b và a+2001/b+2001
4) so sánh các số hữu tỉ sau bằng cách nhanh nhất:
-18/31 và -181818/313131
-13/38 và 29/-88
câu 1
giả sử x=a/m, y=b/m( a,b,m thuộc Z m>0) và x<y. chúng tỏ rằng nếu chọn z=a+b/2m thì ta có x<z<y
câu 2
a,chứng tỏ rằng nếu a/b<c/d (b>0, d>0") thì a/b<a+c/b+d<c/d
b, hãy viết 3 số hữu tỉ xen giữa -1/3 và -1/4
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3
1) a) Cho a, b, thuộc Z và b khác 0. Chứng tỏ rằng: a / -b = -a / b ; -a / -b = a/b
b) So sánh các số hữu tỉ sau : -2 / 5 và 9 / -20 ; 10 / 7 và -40 / -28
2) Cho số hữu tỉ a / b với b > 0. Chứng tỏ rằng :
a) Nếu a / b > 1 thì a > b và ngược lại nếu a > b thì a / b > 1
b) Nếu a / b < 1 thì a < b và ngược lại nếu a < b thì a / b < 1
3) a) Cho 2 số hữu tỉ a / b và c / d với b > 0, d > 0. Chứng tỏ rằng nếu a / b < c / d thì: a / b < a + c / b + d < c / d
b) Viết 4 số hữu tỉ xen giữa 2 số hữu tỉ -1 / 2 và -1 / 3