Bài 1 tìm x y biết x/y+z+1=y/x+z+1=z/x+y-2=x+y+z
Bài 2 cho a(y+z)=b(z+x)=c(x+y) với a khác b khác c và a,b,c khác 0 Cmr y-z/a(b-c)=z-x/b(c-a)=x-y/c(a-b)
Bài 3 tìm p/s dạng p/s tối giản a/b biết a/b=a+6/b+9 với a,b thuộc Z , b khác 0
Bài4cho 4 tỉ số bằng nhau a+b+c/d ; b+c+d/a ; c+d+a/a ; d+a+b/c tính giá trị của mỗi tỉ số trên
cho các số a, b, c, x, y, z thỏa mãn a + b + c = a^2 + b^2 + c^2 = 1 và x/a = y/b = z/c ( các tỉ số đều có nghĩa )
Chứng minh: x^2 + y^2 + z^2 = ( x + y + x )^2
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho a,b,c là các số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
cho các số hữu tỉ x,y,z biết x=a/b, y=c/d,z=3/n trong đó m=(a+c)/2,n=(b+d)/2. so sánh x với z, y với z
cho số a,b,c,x,y,z thỏa mãn a+b+c=a mũ 2 + b mũ 2 +c mũ 2=1 và x/a = y/b = z/c (các tỉ số đều có nghĩa) CHứng minh x mũ 2 +y mũ 2 +z mũ 2 =(x+y+z) mũ 2
Cho các số thực x, y, z, a, b, c khác 0 thỏa mãn x/a = y/b = z/c. Chứng minh rằng: x^2 + y^2 + z^2 / (a^x + b*y + c*z)^2 = 1/ a^2 + b^2 + c^2
Cho các số hữu tỉ x, y, z : x=a/b ; y= c/d ; z= m/n . Trong đó : m= a+c/2 ; n= b+d/2.
Biết x = y. Hay so sanh x voi z;y
Cho các số thực a, b, c khác 0 thảo mãn: a + b + c, a^2 + b^2 + c^2 = 4 và x/a = y/b = z/c. Chứng minh rằng x*y + y*z + z*x = 0
1) cho a/b=c/d chung minh:
a) a^2+c^2/b^2+d^2=a^2-c^2/b^2+d^2
b) (a+c)^2/(b+d)^2=(a-c)^2/b^2+d^2
2) a) cho x/y=y/z=z/x va x+y+z khac 0
tinhx^333.z^666/y^999
b) cho a.c=b^2 ; a.b=c^2 va a+b khac 0 ; a ; b ; c kha 0 ,tinh b^333/a^111.c^222