Vì D > C , B > A
=> D - A > C - B
=> -1 ( D - A ) < ( C - B ) ( -1 )
=> A - D < B - C
Vì D > C , B > A
=> D - A > C - B
=> -1 ( D - A ) < ( C - B ) ( -1 )
=> A - D < B - C
cho các số hữu tỉ x=a/b,y=c/d. z=a+c/b+d(a,b,c,d thuộc Z;b,d >0).Chứng minh rằng nếu x<y thì x<z<y
cho các số hữu tỉ x=a/b; y= c/d ; b > 0 ; d< 0 và các số tự nhiên m,n với m # 0 . chứng minh rằng: nếu a/b < c/d thì a/b < ma + nc / mb + nd < c/d
Chứng minh rằng nếu (a+b+c+d)(a-b-c-d)=(a-b-c+d)(a+b-c-d) thì 4 số a,b,c,d lập thành 1 tỉ lệ thức
Cho a/b=c/d chứng minh rằng:( giả thuyết các tỉ số đều có nghĩa)
a)a-b/a+b=c-d/c+d
cho 2 số hữu tỉ a/b và c/d (b,d > 0) . Chứng minh rằng nếu a/b < c/d thì a.d<b.c
Chứng minh rằng nếu có(a+b+c+d)(a-b-c+d)=(a-b+c-d)(a+b-c-d) thì 4 số a,b,c,d lập thành 1 tỉ lệ thức.
Cho các số hữu tỉ: x = a/b; y = c/d; z = a+c/b+d ( a, b, c, d \(\in\)Z; b > 0, d > 0)
Chứng minh rằng nếu x < y thì x < z < y
Cho 2 số hữu tỉ a/b và c/d (với b>0, d>0)
Chứng minh rằng: nếu a/b < c/d thì a.d < b.c
cho a , b , c , d là các số hữu tỉ dương và a/b = c/d . chứng minh rằng
a ) a.c/b.d = a^2+ c^2 / b^2 + d^2
b ) (a+2.c ). (b + d ) =(a+c ) .(b+ 2.d )