Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Cho x, y, z là các số thực dương thỏa mãn xyz=1. Chứng minh rằng :
\(\frac{x^4y}{x^2+1}+\frac{y^4z}{y^2+1}+\frac{z^4x}{z^2+1}\ge\frac{3}{2}\)
Cho x,y,z là các số thực dương thỏa mãn : x+y+z=xyz
Chứng minh rằng : \(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho x, y, z là 3 số dương (chứng minh hộ mình phần b) thôi)
a) \(3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
b) \(3+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=12\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\)
CMR : \(\frac{1}{4x+y+z}+\frac{1}{x+4y+z}+\frac{1}{x+y+4z}\le\frac{1}{6}\)
cho các số thực dương x;y;z thõa mãn \(x+y+z=1\)chứng minh rằng:
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}\le\frac{9}{4}\)
Cho x,y,z là các số thực dương thỏa mãn x+y+z=xyz.Chứng minh rằng:
a)\(3\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le xyz\)
b)\(\frac{1+\sqrt{1+x^2}}{x}+\frac{1+\sqrt{1+y^2}}{y}+\frac{1+\sqrt{1+z^2}}{z}\le xyz\)
Cho 3 số thực dương x, y, z thỏa mãn : \(x+y\le z\)
Chứng minh rằng : \(\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
Cho x ,y ,z là các số nguyên dương thỏa mãn xyz = 1 . Chứng minh rằng :
\(\frac{x^2}{y+1}+\frac{y^2}{z+1}+\frac{z^2}{z+1}\ge\frac{3}{2}\)
Cho x, y, z là các số thực dương thỏa mãn:
\(x+y+z=xyz\)
Chứng minh rằng :
\(\frac{2}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{9}{4}\)
Đề ko sai đâu.