1) cho x;y;z dương thỏa mãn x+y+z=2 .tìm min P=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
2) cho x;y;z là các số dương sao cho \(x+y+z\ge12\)
tìm min M=\(\frac{x}{\sqrt{y}}+\frac{y}{\sqrt{z}}+\frac{z}{\sqrt{x}}\)
Cho x, y, z > 0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2018\)
Tìm min \(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho các số thực dương a,b,c thỏa mãn:\(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{x^2+z^2}=2015\)
tìm GTNN của bt: T= \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho x,y,z >0 thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}>=6\sqrt{z}\) tìm min P =\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho các số thực dương x;y;z thỏa mãn :\(\sqrt{x^2+y^2}\) +\(\sqrt{y^2+z^2}\)+\(\sqrt{z^2+x^2}\)=2015
tìm giá trị nhỏ nhất của biểu thức : T=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho 3 số thực dương a,b,c thỏa mãn \(\sqrt{x^2+y^2}+\sqrt{y^2+z^2}+\sqrt{z^2+x^2}=2015\)
Tìm GTNN của T=\(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
Cho các số thực dương x,y,z t/m \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm Min T \(=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)
Cho các số thực dương x,y,z t/m \(\sqrt{x}+\sqrt{y}+\sqrt{z}=1\)
Tìm Min T \(=\frac{x^2}{y}+\frac{y^2}{z}+\frac{z^2}{x}-\left(x-y\right)^2-\left(y-z\right)^2-\left(z-x\right)^2\)