cho x;y;z là các số thực dương thỏa mãn \(x\left(x+1\right)+y\left(y+1\right)+z\left(z+1\right)\le18\)
Tìm min của \(P=\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\)
P/S:bài này khá dễ,nhưng thánh nào làm cách ngắn nhất được ko,mình làm mà thầy cú chê dài
cho x, y, z là các số dương thay đổi thỏa mãn điiều kiện: x+y+z=1. Tìm GTLN của
\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
cho các số thực dương x,y,z tm x+y+z<=1
tìm Min P=\(\frac{1}{xz}+\frac{1}{yz}\)
Xét các số thực dương x, y, z thay đổi sao cho x(x - 1) + y(y - 1) + z(z - 1) = 0
1. Chứng minh \(\frac{1}{x+2}+\frac{1}{y+2}+\frac{1}{z+2}\ge1\)
2. Tìm GTLN của biểu thức \(P=x^2+y^2+z^2-\frac{xy}{x+y}-\frac{yz}{y+z}-\frac{zx}{z+x}\)
Cho x,y,z là các số dương thay đổi thỏa mãn : x+y+z=3
Tìm GTNN của biểu thức T=\(x^5+y^5+z^5+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
Cho x,y,z là các sô dương thay đổi thỏa mãn x+y+z=3.Tìm gtnn của T= \(x^5+y^5+z^5+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
cho x,y,z là các số dương thỏa mãn xyz=1
Tìm min M=\(\frac{1}{x^3\left(y+z\right)}+\frac{1}{y^3\left(x+z\right)}+\frac{1}{z^3\left(x+y\right)}\)
Cho x,y,z là các số thực dương t/m: x+y+z=3 . Tìm min BT \(A=\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)