giúp mình với
cho các số dương x,y,z thỏa mãn \(x+y+z\le3\)
tìm giá trị lớn nhất của biểu thức: \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho các số dương x,y,z thỏa mãn \(x+y+z\le3\). TÌm GTLN của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho x,y,z là các số dương thay đổi và luôn thỏa mãn điều kiện xyz=1. Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
cho các số dương x,y,z thỏa mãn:x+y+z\(\le\)3. Tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
giải chi tiết hộ mình nhá
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Cho các số dương x,y,z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x}+\sqrt{y}+\sqrt{z}=2\\x+y+z=2\end{cases}}\)
Tính giá trị của biểu thức P=\(\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{x+1}+\frac{\sqrt{y}}{y+1}+\frac{\sqrt{z}}{z+1}\right)\)
Cho các số thực dương \(x,y,z\) thỏa mãn: \(xy+yz+xz=1\). Hãy tính giá trị biểu thức: \(A=x\sqrt{\dfrac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\dfrac{\left(1+z^2\right)\left(1+x^2\right)}{1+y^2}}+z\sqrt{\dfrac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho \(x,y,z\)là các số thực dương thoả mãn: \(x+y+z\le3\)
Tìm giá trị lớn nhất của biểu thức: \(M=\sqrt{2019x\left(y+2\right)}+\sqrt{2019y\left(z+2\right)}+\sqrt{2019z\left(x+2\right)}\)