Cho các số thực dương x,y,z thõa mãn \(\sqrt{xy}+\sqrt{xz}+\sqrt{yz}=\sqrt{xyz}\)
Tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2y^2+xy+2x^2}\right)\)
Cho các số thực dương x, y, z thõa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=\sqrt{xyz}\). tìm giá trị nhỏ nhất của biểu thức P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+2z^2}+y\sqrt{2z^2+xz+2x^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
Cho các số thực dương thõa mãn \(\sqrt[]{xy}+\sqrt[]{yz}+\sqrt[]{xz}=\sqrt[]{xyz}\)
Tìm Min của P=\(\frac{1}{xyz}\left(x\sqrt{2y^2+yz+z^2}+y\sqrt{2x^2+xz+2z^2}+z\sqrt{2x^2+xy+2y^2}\right)\)
cho x;y;z là các số dương thỏa mãn x+y+z=1.Chứng minh \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\ge\sqrt{5}\)
cho các số dương x,y,z thỏa x+y+z=1
C/m \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2x^2}\)>= \(\sqrt{5}\)
cho các số thực dương x,y,z thoả mãn \(\sqrt{x}\) + \(\sqrt{y}\) + \(\sqrt{z}\) = 1
chứng minh rằng : \(\sqrt{\dfrac{xy}{x+y+2z}}\) + \(\sqrt{\dfrac{yz}{y+z+2x}}\) + \(\sqrt{\dfrac{zx}{z+x+2y}}\) ≤ \(\dfrac{1}{2}\)
Giúp mình với help :((
Cho các số dương x,y,z thỏa mãn : x + y + z = 1
Tìm giá trị nhỏ nhất của biểu thức:
M = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
cho x, y, z dương thỏa mãn: \(xy+yz+zx=3\). Tìm Min \(P=\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)
Cho xy+yz+xz=2xyz (x,y,z>0). Tìm Max P= \(\sqrt{\frac{x}{2y^2z^2+xyz}}+\sqrt{\frac{y}{2z^2x^2+xyz}}+\sqrt{\frac{z}{2x^2y^2+xyz}}\)