Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Secret

Cho các số dương a,b,c thỏa mãn abc=1.Chứng minh rằng 

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge2\left(a+b+c+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\)

Thắng Nguyễn
23 tháng 5 2016 lúc 12:42

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{c}+\frac{a}{c}+\frac{b}{a}\ge3\sqrt[3]{\frac{abc}{c^3}}=\frac{3}{c}\left(1\right)\)

Chứng minh tương tự ta cũng có:

\(\frac{c}{b}+\frac{c}{b}+\frac{a}{c}\ge\frac{3}{b}.\left(2\right)\frac{b}{a}+\frac{b}{a}+\frac{c}{a}\ge\frac{3}{a}.\left(3\right)\)

Cộng theo vế của (1),(2) và (3) ta được

\(3\left(\frac{b}{a}+\frac{a}{c}+\frac{c}{b}\right)\ge3\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right).\left(4\right)\)

Mặt khác, do abc=1 nên theo BĐT AM-GM 

ta có \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\left(\frac{a}{b}+ab\right)+\left(\frac{b}{c}+bc\right)+\left(\frac{c}{a}+ca\right)\ge2a+2b+2c.\left(5\right)\)

Từ (4) và (5) =>đpcm

Đẳng thức xảy ra khi a=b=c=1

Thắng Nguyễn
23 tháng 5 2016 lúc 12:08

dùng BĐT AM-GM

Secret
23 tháng 5 2016 lúc 12:44

thanks Nguyễn Huy Thắng


Các câu hỏi tương tự
Dương Thiên Tuệ
Xem chi tiết
Vô Danh Tiểu Tốt
Xem chi tiết
Nguyệt Băng Vãn
Xem chi tiết
DOC CO CAU BAI
Xem chi tiết
Nguyễn Quốc Gia Huy
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Lê Minh Đức
Xem chi tiết
Thắng Nguyên
Xem chi tiết
Trần Hữu Ngọc Minh
Xem chi tiết