Cho các số dương a,b,c thỏa mãn 1/a + 2/b + 3/c = 6. CMR: a+b^2+c^3>=3
cho các số thực dương a,b,c thỏa mãn abc=1 .CMR
1/2+a+ab +1/2+b+bc +1/2+c+ca _<3/4
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho 3 số thực dương a, b, c thỏa mãn a+b+c=3. CMR:1/(a2+a)+1/(b2+b)+1/(c2+c) > hoac = 3/2
cho các số thực dương a,b,c thỏa mãn a+b+c=1 . CMR
\(\frac{a}{a^2+1}+\frac{b}{b^2+1}+\frac{c}{c^2+1}\le\frac{9}{10}\)
a,b,c là các số thực dương thỏa mãn a+b+c=1. CMR: \(\dfrac{10a}{1+a^2}+\dfrac{10b}{1+b^2}+\dfrac{10c}{1+c^2}< =9\)
cho các số a,b,c thỏa mãn: 1/a^3+1/b^3+1/c^3=3/abc cmr (a+b+c)^2= a^2+b^2+c^2
Cho a,b,c là 3 số dương thỏa mãn a+b+c=3
CMR \(\frac{a}{1+b^2}+\frac{b}{1+c^2}+\frac{c}{1+a^2}\ge\frac{3}{2}\)
Cho a; b; c là các số thực dương thỏa mãn ab + bc + ca = 3.
CMR: \(\frac{1}{1+a^2\left(b+c\right)}+\frac{1}{1+b^2\left(c+a\right)}+\frac{1}{1+c^2\left(a+b\right)}\le\frac{1}{abc}\)