vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ
Chào!Sao cậu lại đặt tên là"Tôi là ai"vậy.Cụm từ đó có ý nghĩa gì?
vào các câu hỏi của hoàng tử lớp học mà xem nhóc ạ
Chào!Sao cậu lại đặt tên là"Tôi là ai"vậy.Cụm từ đó có ý nghĩa gì?
cho các số a,b,c,d tuý ý và \(a\ge b\ge c\ge d\ge0...\)
chứng minh 1) \(a^2-b^2+c^2\ge\left(a-b+c\right)^2...\)
2) \(a^2-b^2+c^2-d^2\ge\left(a-b+c-d\right)^2...\)
DẤU BẰNG XẢY RA KHI NÀO? (chú ý giải đầy đủ th dấu bằng xảy ra nha có liền 3 tick)
cho các số a,b,c tùy ý và:\(a\ge b\ge c\ge d\ge0\). CMR:
1.\(a^2-b^2+c^2\ge\left(a-b-c\right)^2\)
Chứng minh bất đẳng thức: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)\ge\left(a+c\right)\left(b+d\right)\)
Chứng minh các bất đẳng thức sau:
a,\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(b+d\right)\)
b, \(ab+bc+ca\le0\)khi a+b+c=0
Chứng minh rằng với a, b, c, d tùy ý ta luôn có:
\(a^2+b^2+c^2+d^2\ge\left(a+b\right)\left(c+d\right)\)
Bài 3 : (3đ)
1. Chứng minh rằng với hai số thực bất kì a,b ta luôn có : \(\left(\dfrac{a+b}{2}\right)^2\ge ab\)
Dấu bằng xảy ra khi nào ?
2. Cho ba số thực a,b,c không âm sao cho \(a+b+c=1\)
Chứng minh : \(b+c\ge16abc\) . Dấu bằng xảy ra khi nào ?
Nhân tiện em cũng hỏi luôn là tại sao khi em đăng bài mặc dù em đã điền đủ lớp môn ; mạng không lag mà sao vẫn không thể đăng bài được . Em phải mất tận 2 lần ghi lại đề bài mới có thể đăng bài được.
Chứng minh các bất đẳng thức sau:
1. \(\frac{3}{a+b}+\frac{2}{c+d}+\frac{a+b}{\left(a+c\right)\left(b+d\right)}\ge\frac{12}{a+b+c+d}\)
2. \(\frac{\left(a+b\right)^2}{a+b-c}+\frac{\left(b+c\right)^2}{-a+b+c}+\frac{\left(c+a\right)^2}{a-b+c}\ge4.\left(a+b+c\right)\)
Chứng minh các bất đẳng thức:
a. \(a^2+b^2+1\ge ab+a+b\)
b. \(a^2+b^2+c^2\ge a\left(b+c\right)\)
Chứng minh rằng :
1) \(x^2+y^2+z^2\ge xy+yz+xz\)
2)\(a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
3)\(a^2+b^2+c^2+d^2+e^2\ge a\left(b+c+d+e\right)\)
4)\(x^2+2y^2+2z^2>2xy+2yz+2z-2\)
5)\(\frac{a^2+b^2+c^2}{3}\ge\frac{4}{13}\)với 4x + 9y = 2 ; Dấu "=" xảy ra khi nào?
6) \(abc\ge\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)\)với a, b, c là 3 cạnh của một tam giác
7) \(a+b< 2c\)với a, b, c là 3 số dương thỏa \(\hept{\begin{cases}a^2< bc\\b^2< ac\end{cases}}\)
8)\(\frac{a^2}{3}+b^2+c^2>ab+bc+ac\)với abc = 1 và a^3 > 36
9) Cho a, b, c là 3 cạnh của một tam giác có chu vi bằng 2
a) CMR Cả a, b và c đều bé hơn 1
b) CMR \(a^2+b^2+c^2< 2\left(1-abc\right)\)
10)\(\frac{bc}{a}+\frac{ac}{b}+\frac{ab}{c}\ge a+b+c\)với mọi a, b và c dương