#Chuyên mục bất đẳng thức khởi động bước vào năm học mới#
Bài toán 41: Cho a, b, c là các số thực dương thỏa mãn\(a+b-c\ge0;b+c-a\ge0;c+a-b\ge0\)và \(\left(a+b+c\right)^2=4\left(ab+bc+ca-1\right)\)
Tìm GTNN của biểu thức \(S=\sqrt{\frac{a+b}{c}-1}+\sqrt{\frac{b+c}{a}-1}+\sqrt{\frac{c+a}{b}-1}+\frac{2\sqrt{2}}{\sqrt{a^2+b^2+c^2-2}}\)
Bài toán 46: Cho 3 số thực dương a, b, c thỏa mãn\(\sqrt{a-c}+\sqrt{b-c}=\sqrt{\frac{ab}{c}}\)
Tìm GTNN của biểu thức \(P=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}+\frac{c^2}{a^2+b^2}\)
a) Cho a,b,c là các số thực thỏa mãn a+b+c=2018 và \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{2018}\) . Tính giá trị của biểu thức \(A=\frac{1}{a^{2017}}+\frac{1}{b^{2017}}+\frac{1}{c^{2017}}\)
b) Rút gọn biểu thức : \(\frac{\sqrt{\sqrt{5}+2}\sqrt{\sqrt{5}-2}}{\sqrt{\sqrt{5}+1}}-\sqrt{3-2\sqrt{2}}\)
Nhờ các bn giải dùm !!!
cho các số a.b.c thỏa mãn \(\frac{a}{b+c}\) + \(\frac{b}{C+a}\) + \(\frac{c}{a+b}\) = 1
tính giá trị của biểu thức : \(\sqrt{\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}+1}\)
Cho a, b, c > 0 thỏa mãn : \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1\). Tìm GTNN của biểu thức:
\(A=\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+a}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1
Chứng minh bất đẳng thức; \(\sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}>2\)
Cho các số dương a,b,c thỏa mãn: \(\sqrt{a-c}+\sqrt{b-c}=\sqrt{a+b}\)
Tính giá trị của biểu thức: \(P=\frac{bc}{a^2}+\frac{ac}{b^2}+\frac{ab}{c^2}\)
cho các số a,b,c dương thỏa mãn \(\frac{a^2}{\sqrt{a^2+b^2}}+\frac{b^2}{\sqrt{b^2+a^2}}+\frac{c^2}{\sqrt{c^2+a^2}}>=\frac{a+b+c}{\sqrt{2}}\)
Cho a , b , và c là các số thực dương thỏa mãn a + b + c = 3 . Tìm giá trị lớn nhất của biểu thức .
\(P=\sqrt{\frac{a^2}{a^2+b+c^2}}+\sqrt{\frac{b^2}{b^2+c+a^2}}+\sqrt{\frac{c^2}{c^2+a+b^2}}\)
Cho các số dương a,b,c thỏa mãn a+b+c=1. Tìm giá trị nhỏ nhất của biểu thức:
A = \(\frac{ab}{a^2+b^2}+\frac{bc}{b^2+c^2}+\frac{ca}{c^2+a^2}+\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\)