Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
le ngoc han

Cho các số a,b,c khác 0 thoả mãn A×B trên a+b =b×c trên b+c =c×a trên c+a. Tính giá trị của biểu thức P=a×b^2+b×c^2+c×a^2 trên a^3+b^3+c^3

Nhật Hạ
9 tháng 1 2020 lúc 18:32

Ta có: \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\)

\(\Rightarrow\frac{abc}{c\left(a+b\right)}=\frac{abc}{a\left(b+c\right)}=\frac{abc}{b\left(c+a\right)}\)

\(\Rightarrow c\left(a+b\right)=a\left(b+c\right)=b\left(c+a\right)\)

\(\Rightarrow ac+bc=ab+ac=bc+ab\)

Lại có: \(ac+bc=ab+ac\)\(\Rightarrow bc=ab\)\(\Rightarrow a=c\)   (1)

 \(ab+ac=bc+ab\)\(\Rightarrow ac=bc\)\(\Rightarrow a=b\)              (2)

Từ (1) và (2) \(\Rightarrow a=b=c\) 

Ta có: \(P=\frac{ab^2+bc^2+ca^2}{a^3+b^3+c^3}=\frac{a.a^2+b.b^2+c.c^2}{a^3+b^3+c^3}=\frac{a^3+b^3+c^3}{a^3+b^3+c^3}=1\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thị Huyền Thương
Xem chi tiết
nguyen thu huong
Xem chi tiết
Kudo Shinichi
Xem chi tiết
lê vũ linh
Xem chi tiết
Nguyễn Thắng Tùng
Xem chi tiết
Minhchau Trần
Xem chi tiết
Minhchau Trần
Xem chi tiết
beec chaang
Xem chi tiết
Đinh Kiều Nhi
Xem chi tiết