Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoang minh

Cho các phân số thoả mẫn tích các phân số đó là một nguyên và tống hai phân số bất kỳ trong các phân số đó cũng là sồ nguyên. Chứng minh rằng tất cả các phân số đã cho đều nguyên.

Lê Song Phương
28 tháng 6 2023 lúc 15:19

 Gọi \(q_1,q_2,...,q_n\left(q_i\inℚ,\forall i=\overline{1,n}\right)\). Theo đề bài, ta có \(q_1q_2...q_n\inℤ\) và \(q_i+q_j\inℤ,\forall i\ne j;i,j=\overline{1,n}\). Không mất tính tổng quát, giả sử \(q_1< q_2< ...< q_n\)

 Ta thấy \(q_1+q_2\inℤ\) và \(q_2+q_3\inℤ\) nên \(q_1-q_3\inℤ\). Mà \(q_1+q_3\inℤ\) nên nếu ta đặt \(q_1-q_3=v\) và \(q_1+q_3=u\) với \(u,v\inℤ\) thì \(q_1=\dfrac{u+v}{2};q_3=\dfrac{u-v}{2}\). Do \(q_1+q_2=\dfrac{u+v+2q_2}{2}\) và \(q_3+q_2=\dfrac{u-v+2q_2}{2}\) cũng là các số nguyên, hơn nữa \(u-v\equiv u+v\left(mod2\right)\) nên ta chỉ cần suy ra \(u+v+2q_1⋮2\) hay \(u+v\) là số chẵn, cũng tức là \(q_1=\dfrac{u+v}{2}\) là số nguyên. Một cách tương tự, ta sẽ chứng minh được \(q_i\inℤ,\forall i=\overline{1,n}\) (đpcm)


Các câu hỏi tương tự
Đỗ Hồng Thức
Xem chi tiết
Tiểu Mumi
Xem chi tiết
Hoàng Anh Thắng
Xem chi tiết
Hà Vũ Thị Thu
Xem chi tiết
D.S Gaming
Xem chi tiết
qqqqqqq
Xem chi tiết
Hứa Thị Thu Thảo
Xem chi tiết
Thanh Hiếu Đặng
Xem chi tiết
Nguyễn Minh
Xem chi tiết