\(f\left(x\right)=ax+b\Rightarrow x=\dfrac{-b}{a}\)
vì x dương nên a âm hoặc b âm
\(g\left(x\right)=bx+a\Rightarrow x=\dfrac{-a}{b}\)
vì a âm hoặc b âm nên đa thức g(x) có nghiệm là \(x=\dfrac{-a}{-b}=\dfrac{a}{b}\left(dương\right)\)
\(f\left(x\right)=ax+b\Rightarrow x=\dfrac{-b}{a}\)
vì x dương nên a âm hoặc b âm
\(g\left(x\right)=bx+a\Rightarrow x=\dfrac{-a}{b}\)
vì a âm hoặc b âm nên đa thức g(x) có nghiệm là \(x=\dfrac{-a}{-b}=\dfrac{a}{b}\left(dương\right)\)
Cho 2 đa thức sau :
f(x) = ( x+1)( x-2 )
g(x) = x^3 +ax^2 + bx - 6
Biết rằng nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x). Chứng tỏ rằng g(x) cũng nhận x = -3 làm nghiệm
cho đa thức f(x)=ax^2-bx +1 tìm a;b biết f(x)có nghiệm là 1 và -1/2
Cho đa thức f(x) = ax2 + bx + c (với a,b,c là hằng số). Chứng minh rằng:
a) Nếu a + b + c = 0 thì đa thức f(x) có 1 nghiệm là x = 1.
b) Nếu a - b + c = 0 thì đa thức f(x) có 1 nghiệm là x = -1.
Cho đa thức bậc nhất: f(x)=ax+b và g(x)=bx+a (a,b khác 0) giả sử f(x) có nghiệm là \(x_0\) tìm nghiệm của g(x-
Biết đa thức f(x)=\(ax^{^{ }3}+bx^2+cx+d\)(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
cho đa thức m(x)=ax^2+bx+c biết a+c=b. chứng tỏ x= -1 là một nghiệm của đa thức M(x)
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
Cho đa thức f(x)=x^2+ax+b. Xác định hệ số a,b biết đa thức có 2 nghiệm: x1=1; x2=2
Cho đa thức A (x) ax^2 + bx +c ( với a, b, c là các hằng số ) Chứng minh rằng:
a, Nếu a+b+c = 0 thì x= 1 là một nghiệm của đa thức A(x)
Nếua-b+c = 0 thì x = -1 là một nghiệm của đa thức A( x)
Giúp mình với😅😅😅