Ta có: f(x0)= 0 <=> a.x0+b= 0
<=> b= -a.x0 (1)
Gọi nghiệm của g(x) là x1 => g(x1)=0 <=> b.x1+a= 0
Thay (1) vào => -a.x0.x1+a= 0
=> a.(-x0.x1+1)= 0
Do a khác 0 => -x0.x1+1= 0
=> x0.x1= 1
=> x1= 1/x0
Ta có: f(x0)= 0 <=> a.x0+b= 0
<=> b= -a.x0 (1)
Gọi nghiệm của g(x) là x1 => g(x1)=0 <=> b.x1+a= 0
Thay (1) vào => -a.x0.x1+a= 0
=> a.(-x0.x1+1)= 0
Do a khác 0 => -x0.x1+1= 0
=> x0.x1= 1
=> x1= 1/x0
cho các đa thức f(x)= ax+b và g(x)= bx+a, trong đó a,b khác 0. Biết rắng nghiệm của đa thức f(x) là số dương.
cmr nghiệm của đa thức g(x) cũng là 1 số dương
cho đa thức f(x)=ax^2-bx +1 tìm a;b biết f(x)có nghiệm là 1 và -1/2
Cho 2 đa thức sau :
f(x) = ( x+1)( x-2 )
g(x) = x^3 +ax^2 + bx - 6
Biết rằng nghiệm của đa thức f(x) cũng là nghiệm của đa thức g(x). Chứng tỏ rằng g(x) cũng nhận x = -3 làm nghiệm
Cho đa thức f(x) = ax2 + bx + c (với a,b,c là hằng số). Chứng minh rằng:
a) Nếu a + b + c = 0 thì đa thức f(x) có 1 nghiệm là x = 1.
b) Nếu a - b + c = 0 thì đa thức f(x) có 1 nghiệm là x = -1.
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
Biết đa thức f(x)=\(ax^{^{ }3}+bx^2+cx+d\)(với a khác 0) có 2 nghiệm 1 và-1. Tìm nghiệm thứ ba của đa thức f(x)?
Tìm nghiệm của các đa thức a)f(x)=4x+12;b)g(x)=2^x2-8x
Bài 2: Cho f(x) = x2- 2x - 5x4+6 và g(x)= x3 - 5x4 + 3x2 -3
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
b) Tính f(x) + g(x) và f(x) - g(x)
c)Chứng tỏ rằng x=1 là nghiệm của đa thức f(x)
d) Tìm đa thức h(x). Biết h(x) + f(x) - g(x) = -2x2- x +9
e)Tim nghiệm cả đa thức h(x)
Bài 1: Cho hai đa thức: M= 2xy2- 3x + 12 và N= -xy2-3. Tính M+N
Bài 2: Cho f(x) = x2- 2x - 5 x4 +6 và g(x)= x3 - 5x4 + 3x2 -3
a) Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến .
b) Tính f(x) + g(x) và f(x) - g(x)
c)Chứng tỏ rằng x=1 là nghiệm của đa thức f(x)
d) Tìm đa thức h(x). Biết h(x) + f(x) - g(x) = -2x2- x +9
e)Timg nghiệm cả đa thức h(x)