Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Minh Đức

cho cá số thực dương a,b,c thỏa mãn \(2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)=6\)

Tìm giá trị nhỏ nhất của biểu thức:

\(P=\frac{bc}{a\left(2b+c\right)}+\frac{ca}{b\left(2a+c\right)}+\frac{4ab}{c\left(a+b\right)}\)

Thắng Nguyễn
23 tháng 12 2016 lúc 20:29

Áp dụng BĐT AM-GM ta có:

\(6=2\left(\frac{a}{b}+\frac{b}{a}\right)+c\left(\frac{a}{b^2}+\frac{b}{a^2}\right)\)

\(\ge4+\frac{c\left(a^3+b^3\right)}{a^2b^2}\ge4+\frac{c\left(a+b\right)}{ab}\)\(\Rightarrow\frac{c\left(a+b\right)}{ab}\in\text{(}0;2\text{]}\)

Áp dụng BĐT Cauchy-Schwarz lại có:

\(P\ge\frac{\left(bc+ca\right)^2}{2abc\left(a+b+c\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)\(\ge\frac{3c^2\left(a+b\right)^2}{2\left(ab+bc+ca\right)}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left(1+\frac{ca}{ab}+\frac{bc}{ab}\right)^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

\(=\frac{\frac{3c^2\left(a+b\right)^2}{a^2b^2}}{2\left[1+\frac{c\left(a+b\right)}{ab}\right]^2}+\frac{4}{\frac{c\left(a+b\right)}{ab}}\)

Đặt \(x=\frac{c\left(a+b\right)}{ab}\left(x\in\text{(}0;2\text{]}\right)\) khi đó ta có:

\(P\ge\frac{3x^2}{2\left(1+x\right)^2}+\frac{4}{x}\) cần chứng minh \(P\ge\frac{8}{3}\Leftrightarrow\left(x-2\right)\left(7x^2+22x+12\right)\le0\forall x\in\text{(0;2]}\)

Vậy \(Min_P=\frac{8}{3}\) khi a=b=c=2

Lê Minh Đức
23 tháng 12 2016 lúc 22:37

Chỗ dùng cauchy- schwarz mình không hiểu lắm


Các câu hỏi tương tự
Thức Vương
Xem chi tiết
Ánh Lê Ngọc
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết
phan tuấn anh
Xem chi tiết
Nguyễn Văn Khoa
Xem chi tiết
Nguyễn Thị Kim Tuyến
Xem chi tiết
Phạm Trần Minh Trí
Xem chi tiết
pham thi thu trang
Xem chi tiết
Kiệt Nguyễn
Xem chi tiết