Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Minh Tuấn

cho c^2 +2(ab -ac -bc ) =0 và b khác c, a+b khác 0. Chứng minh a^2 +(a-c)^2 /b^2+(b-c)^2 = a-c / b-c

Pham Van Hung
25 tháng 11 2018 lúc 21:52

\(a^2+b^2+c^2+2ab-2ac-2bc=a^2+b^2\)

\(\Rightarrow\left(a+b-c\right)^2=a^2+b^2\)

\(\Rightarrow\hept{\begin{cases}a^2=\left(a+b-c\right)^2-b^2=\left(a+b-c-b\right)\left(a+b-c+b\right)=\left(a-c\right)\left(a+2b-c\right)\\b^2=\left(a+b-c\right)^2-a^2=\left(a+b-c-a\right)\left(a+b-c+a\right)=\left(b-c\right)\left(2a+b-c\right)\end{cases}}\)

\(a^2+\left(a-c\right)^2=\left(a-c\right)\left(a+2b-c\right)+\left(a-c\right)^2\)

\(=\left(a-c\right)\left(a+2b-c+a-c\right)=2\left(a-c\right)\left(a+b-c\right)\)

\(b^2+\left(b-c\right)^2=\left(b-c\right)\left(2a+b-c\right)+\left(b-c\right)^2\)

\(=\left(b-c\right)\left(2a+b-c+b-c\right)=2\left(b-c\right)\left(a+b-c\right)\)

Vậy \(\frac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\frac{2\left(a-c\right)\left(a+b+c\right)}{2\left(b-c\right)\left(a+b+c\right)}=\frac{a-c}{b-c}\)


Các câu hỏi tương tự
trinh thi minh phuong
Xem chi tiết
hanh le
Xem chi tiết
Nguyễn Bá Hảo
Xem chi tiết
Phạm Quang Đạt
Xem chi tiết
Nguyễn Đức Anh
Xem chi tiết
Nguyễn Hoàng Anh Thư
Xem chi tiết
Mi Trần
Xem chi tiết
Trương Minh Huyền
Xem chi tiết
Nguyễn Ngọc Linh
Xem chi tiết