\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)
\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)
\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(tổng có 2010 số 1)
\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
Xét tổng \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)
=> \(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)
=> \(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\)\(\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
=> \(3A=1-\frac{1}{4^{2010}}2010-1>2009\)
\(C=\frac{4^1-1}{4^1}+\frac{4^2-1}{4^2}+...+\frac{4^{2009}-1}{4^{2009}}+\frac{4^{2010}-1}{4^{2010}}\)
\(C=\frac{4^1}{4^1}-\frac{1}{4^1}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{4^{2009}}{4^{2009}}-\frac{1}{4^{2009}}+\frac{4^{2010}}{4^{2010}}-\frac{1}{4^{2010}}\)
\(C=\left(1+1+...+1\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)(có 2010 số 1)
\(C=2010-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
Xét : \(A=\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\)
\(4A=1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\)
\(4A-A=\left(1+\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}\right)-\left(\frac{1}{4^1}+\frac{1}{4^2}+...+\frac{1}{4^{2009}}+\frac{1}{4^{2010}}\right)\)
\(3A=1-\frac{1}{4^{2010}}< 1\)
\(A< \frac{1}{3}\)
\(C=2010-A>2010-\frac{1}{3}>2010-1>2009\)