Ta có: C + D = 8
<=> 2x^3 - 6x^2 + 8x + 2y^3 - 6y^2 + 8y = 8
<=> x^3 - 3x^2 + 4x + y^3 - 3y^2 + 4y = 4
<=> ( x^3 - 3x^2 + 3x - 1 ) + ( y^3 - 3y^2 + 3y - 1 ) + ( x + y - 2 ) = 0
<=> ( x - 1 )^3 + ( y - 1 )^3 + ( x + y - 2 ) = 0
<=> ( x - 1 + y - 1 ) . ( ( x - 1 )^2 - ( x - 1 )( y - 1 ) + ( y - 1 )^2 ) + ( x + y - 2 ) = 0
<=> ( x + y - 2 ) . A + ( x + y - 2 ) = 0
<=> ( x + y - 2 ) . ( A + 1 ) = 0
<=> x + y - 2 = 0 ( vì A lớn hơn hoặc = 0 nên A + 1 > 0 )
<=> x + y = 2.
Vậy x + y = 2.
Minh rảnh nhỉ??? Tự hỏi tự trả lời :))