Ta có :
1.M = \(\left(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\right)\)
$⇔ M = (x^2 - 6x + 19) - (x^2 - 6x + 10)$
$⇔ M = 9$
Ta có :
1.M = \(\left(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}\right)\left(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\right)\)
$⇔ M = (x^2 - 6x + 19) - (x^2 - 6x + 10)$
$⇔ M = 9$
cho biểu thức A= \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
hãy tính giá trị của biểu thức
A=\(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
VẬN DỤNG BÀI BIẾN ĐỔI ĐƠN GIẢN BIỂU THỨC CHỨA CĂN BẬC HAI
Cho \(\sqrt{x^2-6x+19}-\sqrt{x^2-6x+10}=3\)
Tính M = \(\sqrt{x^2-6x+19}+\sqrt{x^2-6x+10}\)
Cho số thực x thỏa mãn \(\sqrt{x^2-6x+36}+\sqrt{x^2-6x+64}=18\)
Tính giá trị biểu thức \(A=\sqrt{4x^2-24x+256}-2\sqrt{x^2-6x+36}\)
Cho biểu thức: B = \(12-\sqrt{x^2-6x+10}\)
Giá trị lớn nhất của biểu thức B là:
cho biểu thức :
a) \(\sqrt{x^2-6x+22}+\sqrt{x^2-6x+10}=4\)
tính \(A=\sqrt{x^2-6x+22}-\sqrt{x^2-6x+10}\)
b) \(\sqrt{y^2+2y-10}-\sqrt{y^2+2y+15}=5\)
tính \(B=\sqrt{y^2-2y-10}+\sqrt{y^2+2y+15}\)
Cho \(x=\sqrt{4+\sqrt{10+2\sqrt{5}}+\sqrt{4-\sqrt{10+2\sqrt{5}}}}\)
Tính giá trị của biểu thức: \(P=\frac{x^4-4x^3+x^3+6x+12}{x^2-2x+12}\)
Tính giá trị biểu thức \(\sqrt{3x+\sqrt{6x-1}}-\sqrt{3x-\sqrt{6x-1}}\)với \(x=5+2\sqrt{7}\)
Cho biểu thức :
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) Rút gọn biểu thức A
b) Tìm giá trị của x để A=1
cho biểu thức:
\(A=\sqrt{x^2-6x+9}-\sqrt{x^2+6x+9}\)
a) rút gọn A
b) tìm các giá trị của x để A=1
Tính giá trị biểu thức :\(M=x^3-6x\) với \(x=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\)