Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quang Duy

Cho Biểu thức sau: \(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)
1, Tìm điều kiện để P có nghĩa và rút gọn P.
2. Tìm x để P\(\ge\)\(-\frac{3}{4}\)

Nguyễn Huy Tú
22 tháng 8 2021 lúc 16:24

a, Với \(x\ge0;x\ne\frac{16}{9};4\)

\(P=\frac{2\sqrt{x}-4}{3\sqrt{x}-4}-\frac{4+2\sqrt{x}}{\sqrt{x}-2}+\frac{x+13\sqrt{x}-20}{3x-10\sqrt{x}+8}\)

\(=\frac{2x-8\sqrt{x}+8-4\sqrt{x}-6x+16+x+13\sqrt{x}-20}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-3x+\sqrt{x}+4}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{-\left(3\sqrt{x}-4\right)\left(\sqrt{x}+1\right)}{\left(3\sqrt{x}-4\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}+1}{2-\sqrt{x}}\)

b, \(P\ge-\frac{3}{4}\Rightarrow\frac{\sqrt{x}+1}{2-\sqrt{x}}+\frac{3}{4}\ge0\Leftrightarrow\frac{4\sqrt{x}+4+6-3\sqrt{x}}{8-4\sqrt{x}}\ge0\Leftrightarrow\frac{\sqrt{x}+10}{8-4\sqrt{x}}\ge0\)

\(\Rightarrow2-\sqrt{x}\ge0\Leftrightarrow x\le4\)Kết hợp với đk vậy \(0\le x< 4\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
lê Ngọc Trang Vy
Xem chi tiết
Trần Anh Tuấn
Xem chi tiết
Nguyễn Quang Duy
Xem chi tiết
Dương Quốc Dũng
Xem chi tiết
Hoàng Kiệt
Xem chi tiết
tung nguyen
Xem chi tiết
Nguyễn Tấn Khoa
Xem chi tiết
Phan Lê Kim Chi
Xem chi tiết
Park Chanyeol
Xem chi tiết