Cho x, y >0 và x+y = 1. Rút gọn biểu thức:
\(A=\frac{y-x}{xy}:\left(\frac{y^2}{\left(x-y\right)^2}-\frac{2x^2y}{\left(x^2-y^2\right)^2}+\frac{x^2}{y^2-x^2}\right)\)
Cho x,y>0 thoả mãn x+y=1. Tìm GTNN của biểu thức: P=\(\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\)
Cho x,y khác 0 thỏa mãn \(\hept{\begin{cases}\frac{5}{x}+\frac{1}{y}=2\left(y^2+x^2\right)\\\frac{5}{x}-\frac{1}{y}=y^2-x^2\end{cases}}\)
Tính giá trị của biểu thức M=x-y
tìm gtnn của biểu thức q=1/2(x^10/y^2 + y^10/x^2)+1/4(x^16 + y^16) - (1+ x^2y^2 )^
Cho x,y,z > 1 thỏa mãn điều kiện x + y + z = xyz. Tìm GTNN của biểu thức \(A=\frac{y-2}{x^2}+\frac{z-2}{y^2}+\frac{x-2}{z^2}\)
Cho x, y>0 thỏa mãn x+y=1.
Tìm GTNN của biểu thức: \(M=\left(x^2+\frac{1}{y^2}\right)\left(y^2+\frac{1}{x^2}\right)\).
Cho 3 số thực x, y, z thỏa mãn \(x^2+y^2+z^2=3\). Tìm giá trị nhỏ nhất của biểu thức :
\(M=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
cho các sỗ thực x,y thỏa mãn x+y =2 tìm gtnn của biểu thức Q=\(x^3+y^3+x^2+y^2\)
cho 0<x,y<1 và x/(1-x)+y/(1-y)=1 tính giá trị biểu thức P=x+y + \(\sqrt{x^2-xy+y^2}\)
1)cho x; y là 2 số khác nhau thỏa mãn: \(x^2+y=y^2+x\)
tính giá trị biểu thức: \(P=\frac{x^2+y^2+xy}{xy-1}\)
2)cho biểu thức: \(P=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
a)tìm các giá trị của x sao cho \(P=\frac{1}{2}\)
b) chứng minh \(P\le\frac{2}{3}\)