Cho biểu thức:\(P=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
a) Rút gọn P
b) Tính P khi \(x=33-8\sqrt{2}\)
c) Chứng minh rằng: P < 1/3
các bạn giải chi tiết giúp mk nhé. Cảm ơn
1. a> Rút gọn biểu thức sau : A= \(5\left(\frac{1}{\sqrt{2-\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{10}}{2}\right)^2\)+ \(\left(\frac{1}{\sqrt{2+\sqrt{3}}}+\sqrt{3-\sqrt{5}}-\frac{\sqrt{6}}{2}\right)^2\)
b) Cho biểu thức B= \(\left(\frac{\sqrt{x}+1}{\sqrt{x}-1}-\frac{\sqrt{x}-1}{\sqrt{x+1}}-\frac{8\sqrt{x}}{x-1}\right):\left(\frac{\sqrt{x}-x-3}{x-1}-\frac{1}{\sqrt{x}-1}\right)\)
Rút gọn biểu thức B và chứng minh B nhỏ hơn hoặc bằng 1 với mọi x lớn hơn hoặc bằng 0 và x khác 1
Cho biểu thức A = \(\left\{\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+2}{x\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\right\}:\frac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
1. Rút gọn biểu thức
2. Chứng minh rằng 0<A<2
GIÚP MÌNH VỚI Ạ !
Cho bểu thức: P = \(\frac{2x+2}{\sqrt{x}}+\frac{x\sqrt{x}-1}{x-\sqrt{x}}-\frac{x\sqrt{x}+1}{x+\sqrt{x}}\) với x > 0 và x khác 1
1) Rút gọn P
2) So sánh P với 5
3) Với mọi x làm cho biểu thức P có nghĩa, chứng minh rằng \(\frac{8}{P}\)chỉ nhận đúng một giá trị nguyên
cho biểu thức A = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)ĐK : x>= 0, x khác 1
a, rút gọn A
b, Tìm các giá trị của x để A bằng 1/2
c, Tìm các giá trị của x để A < 1
rút gon biểu thức \(\text{A=\frac{x-2\sqrt{x}+3}{x\sqrt{x}+1}}+\frac{\sqrt{x}-1}{x-\sqrt{x}+1}-\frac{1}{\sqrt{x}+1}\)
1) chứng minh đăng thức sau
\(\sqrt{7+4\sqrt{3}}-\sqrt{7-4\sqrt{3}}=2\sqrt{3}\)
2) Cho biểu thức \(P=\left(\frac{1}{x-\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}-1}\right):\left(\frac{2}{x-1}+\frac{1}{\sqrt{x}+1}\right)\)với \(x>0\)và \(x\ne1\)
a) rút gọn biểu thức P
b) Với mọi x thỏa mãn điều kiện x>0 x khác 1.Hãy so sánh giá trị của P với 2
rút gon biểu thức sau:
P=\(\frac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\frac{\sqrt{x}+1}{\sqrt{x}+2}+\frac{\sqrt{x}-2}{1-\sqrt{x}}\)
cho biểu thức A=(\(\frac{2\sqrt{x}+x}{x\sqrt{x}-1}-\frac{1}{\sqrt{x}-1}\)) chia:(\(\frac{\sqrt{x}+2}{x+\sqrt{x}+1}\))
a.rút gon
b.tính g.trị \(\sqrt{A}\)khi x =\(4+2\sqrt{3}\)