\(7-x=7-\left(x-4\right)-4=3-\left(x-4\right)\)
để M ∈ Z \(\Rightarrow\) 7 - x ⋮ x - 4 \(\Leftrightarrow\) 3 - (x - 4) ⋮ x - 4
mà x - 4 ⋮ x - 4
\(\Rightarrow\) x - 4 ∈ Ư{3} = {-3; -1; 1; 3}
ta có bảng:
x - 4 | -3 | -1 | 1 | 1 |
x | 1 | 3 | 5 | 7 |
vậy x ∈ {1; 3; 5; 7}
Để `M = ( 7-x )/( x-4 )` nguyên
`=> 7-x` \(\vdots\) `x-4`
`=> x-7` \(\vdots\) `x-4`
`=> \(x-4-3\) \(\vdots\) `x-4`
Do `x-4` \(\vdots\) `x-4` mà để `x-4-3` \(\vdots\) `x-4`
`=> 3` \(\vdots\) `x-4` hay `x-4 in Ư_(3) = { +-1 ; +-3 }`
`=> x in { 5;3;7;1}`
Vậy `x in { 5;3;7;1}`