Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Linh Nhi

Cho biểu thức D= \(\left[\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right]\)\(:\left[1+\frac{a+b+2ab}{1-ab}\right]\)

a) Tính giá trị D với a= \(\frac{2}{2+\sqrt{3}}\)

b) Tính giá trị lớn nhất của D

 

Hoàng Lê Bảo Ngọc
8 tháng 7 2016 lúc 17:06

 Trước hết ta rút gọn D :

 \(D=\left(\frac{\sqrt{a}+\sqrt{b}}{1-\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{1+\sqrt{ab}}\right):\left(1+\frac{a+b+2ab}{1-ab}\right)\)(ĐKXĐ : \(a\ne0,b\ne0,ab\ne1\))

\(=\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(1+\sqrt{ab}\right)+\left(\sqrt{a}-\sqrt{b}\right)\left(1-\sqrt{ab}\right)}{\left(1-\sqrt{ab}\right)\left(1+\sqrt{ab}\right)}:\frac{1+a+b+ab}{1-ab}\)

\(=\frac{2\sqrt{a}\left(b+1\right)}{1-ab}.\frac{1-ab}{\left(a+1\right)\left(b+1\right)}=\frac{2\sqrt{a}}{a+1}\)

a) Với \(a=\frac{2}{2+\sqrt{3}}=\frac{2\left(2-\sqrt{3}\right)}{4-3}=4-2\sqrt{3}=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow D=\frac{2\sqrt{\left(\sqrt{3}-1\right)^2}}{4-2\sqrt{3}+1}=\frac{2\left(\sqrt{3}-1\right)}{5-2\sqrt{3}}\)

b) Ta có : \(\left(\sqrt{a}-1\right)^2\ge0\Leftrightarrow a+1\ge2\sqrt{a}\Leftrightarrow\frac{2\sqrt{a}}{a+1}\le1\)

Suy ra Max D = 1 <=> a = 1


Các câu hỏi tương tự
Hoàng Đình Đại
Xem chi tiết
Tân Nguyễn
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Mỹ Ninh
Xem chi tiết
Lương Minh Tuấn
Xem chi tiết
công hạ vy
Xem chi tiết
Trần Anh
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết
trần gia bảo
Xem chi tiết