\(C=\left(\frac{a+\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}-1}{a-\sqrt{a}}\right):\frac{\sqrt{a}-1}{a}\)
\(=\left(\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}-1}{a}\)
\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right):\frac{\sqrt{a}-1}{a}=\frac{a-1}{\sqrt{a}}:\frac{\sqrt{a}-1}{a}=\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{a}{\sqrt{a}-1}\)
\(=\left(\sqrt{a}+1\right)\sqrt{a}\)
Với a > 0 , a khác 1 ta có :
\(C=\left[\frac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}-\frac{\sqrt{a}-1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]\cdot\frac{a}{\sqrt{a}-1}\)
\(=\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\cdot\frac{a}{\sqrt{a}-1}=\frac{a-1}{\sqrt{a}}\cdot\frac{a}{\sqrt{a}-1}=\sqrt{a}\left(\sqrt{a}+1\right)=a+\sqrt{a}\)
*bài này làm sao ấy tìm Min không ra:v*