\(a,A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{3+x}\right)\\ =\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}-\dfrac{x^2-1}{x^2-9}\right):\left(\dfrac{2\left(3+x\right)}{3+x}-\dfrac{x+5}{3+x}\right)\\ =\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}-\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{2\left(3+x\right)-\left(x+5\right)}{3+x}\\ =\left(\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x-3\right)\left(x+3\right)}-\dfrac{x^2-1}{\left(x-3\right)\left(x+3\right)}\right):\dfrac{6+2x-x-5}{3+x}\)
\(=\dfrac{x^2-3x-\left(2x+6\right)-\left(x^2-1\right)}{\left(x-3\right)\left(x+3\right)}:\dfrac{x+1}{3+x}\\ =\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3+x}{x+1}\\ =\dfrac{-5x-5}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{3+x}{x+1}\\ =\dfrac{-5\left(x+1\right).\left(3+x\right)}{\left(x-3\right)\left(x+3\right).\left(x+1\right)}\\ =\dfrac{-5}{x-3}\)
\(b,A=x^2-x-2=0\\ \Leftrightarrow x^2+x-2x-2=0\\ \Leftrightarrow x\left(x+1\right)-2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
\(c,\dfrac{-5}{x-3}=\dfrac{1}{2}\\ \Leftrightarrow-10=x-3\\ \Leftrightarrow-x+3=10\\ \Leftrightarrow-x=7\\ \Leftrightarrow x=7\)
Để `A=1/2` thì `x=7`