Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
꧁WღX༺

Cho biểu thức; \(A=\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

a) Rút gọn A

b) Tìm các giá trị của x để A>-1

✰๖ۣۜŠɦαɗøω✰
21 tháng 4 2020 lúc 15:27

a) Ta có :A = \(\left(\frac{\left(x-1\right)^2}{3x+\left(x-1\right)^2}-\frac{1-2x^2+4x}{x^3-1}+\frac{1}{x-1}\right):\frac{x^2+x}{x^3+x}\)

ĐK: \(\hept{\begin{cases}x\ne0\\x\ne1\end{cases}}\)

A = \(\left(\frac{\left(x-1\right)^2}{x^2+x+1}-\frac{1-2x^2+4x}{\left(x-1\right)\left(x^2+x+1\right)}+\frac{1}{x-1}\right):\frac{x\left(x+1\right)}{x\left(x^2+1\right)}\)

    \(\frac{\left(x-1\right)^3-1+2x^2-4x+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    \(\frac{x^3-3x^2+3x-1+3x^2-3x}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}\)

    = \(\frac{x^3-1}{\left(x-1\right)\left(x^2+x+1\right)}.\frac{x^2+1}{x+1}=1.\frac{x^2+1}{x+1}=\frac{x^2+1}{x+1}\)

b) Để A > - 1 <=> \(\frac{x^2+1}{x+1}>-1\)

                       <=> \(\frac{x^2+1}{x+1}+1>0\)

                        <=> \(\frac{x^2+x+2}{x+1}>0\)

Vì x2 + x + 2 >0 \(\forall x\)

=> A > 0 <=> x + 1 > 0 <=> x > -1

Khách vãng lai đã xóa

Các câu hỏi tương tự
Dương Chí Thắng
Xem chi tiết
Tường Hồ Bá Mạnh
Xem chi tiết
Đỗ Phương Thảo
Xem chi tiết
Yến Nhi
Xem chi tiết
EnderCraft Gaming
Xem chi tiết
Nguyễn Việt Hà
Xem chi tiết
êfe
Xem chi tiết
Lý Gia Hân
Xem chi tiết
shoppe pi pi pi pi
Xem chi tiết