a) ĐKXĐ: x∉{-3;2}
Ta có: \(A=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
a,\(A=\frac{\left(x-2\right)\left(x+2\right)}{\left(x+3\right)\left(x-2\right)}\)-\(\frac{5}{\left(x-2\right)\left(x+3\right)}\)-\(\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)dkxdx-2≠0,x+3≠0,x≠2,-3
\(=\frac{x^2-4-5-\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
=\(\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
=\(\frac{\left(x+3\right)\left(x-4\right)}{\left(x-2\right)\left(x+3\right)}\)
=\(\frac{x-4}{x-2}\)