Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hirari Hirari

Cho biểu thức : \(A=\frac{a^3+2a^2-1}{a^3+2a^2+2a+1}\)

a, Rút gọn biểu thức.

b, Chứng minh rằng nếu a là số nguyên thì giá trị của biểu thức tìm được của câu a, là một phân số tối giản.

 

o0o Vi _Sao _Dem _Trang...
21 tháng 5 2016 lúc 9:08

a)

$A=\frac{\left(a^3+a^2\right)+\left(a^2-1\right)}{\left(a^3+a^2\right)+\left(a^2+a\right)+\left(a+1\right)}=\frac{a^2\left(a+1\right)+\left(a+1\right)\left(a+1\right)}{a^2\left(a+1\right)+a\left(a+1\right)+\left(a+1\right)}=\frac{\left(a+1\right)\left(a^2+a-1\right)}{\left(a+1\right)\left(a^2+a+1\right)}=\frac{a^2+a-1}{a^2+a-1}$A=(a3+a2)+(a2−1)(a3+a2)+(a2+a)+(a+1) =a2(a+1)+(a+1)(a+1)a2(a+1)+a(a+1)+(a+1) =(a+1)(a2+a−1)(a+1)(a2+a+1) =a2+a−1a2+a−1 

b) gọi d = ƯCLN (a2 + a - 1; a2 + a +1 )

=> a2 + a -  1 chia hết cho d

a2 + a +1 chia hết cho d

=> (a2 + a + 1) - (a2 + a - 1) chia hết cho d => 2 chia hết cho d 

=> d = 1 hoặc d = 2

Nhận xét: a2 + a -1 = a.(a+1) - 1 . Với số nguyên a ta có a(a+1) là tích 2 số nguyên liên tiếp => a.(a+1) chia hết cho 2

=> a(a+1) - 1 lẻ => a2 + a - 1 lẻ

=> d không thể = 2

Vậy d = 1 => đpcm

Hirari Hirari
21 tháng 5 2016 lúc 9:26

Ủa Lê Nho Không Nhớ ơi câu a làm như thế nào vậy


Các câu hỏi tương tự
Nguyễn Hường
Xem chi tiết
nguyễn trúc phương
Xem chi tiết
Lãnh Hạ Thiên Băng
Xem chi tiết
Nguyễn Quang Duy
Xem chi tiết
Lê Hiền Hiếu
Xem chi tiết
Dương Thị Thùy Trang
Xem chi tiết
Võ Lê Khánh Minh
Xem chi tiết
Kudo Shinichi
Xem chi tiết
Tiên Trần
Xem chi tiết
Thanh Nghĩa
Xem chi tiết