a) Biểu thức A xác định khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Leftrightarrow}\)\(\begin{cases}x\ne1\\x\ne\pm1\end{cases}\)(bạn thông cảm chỗ này mình ko viết được ngoặc nhọn)
Vậy biểu thức A xác định khi \(x\ne\pm1\)
b)\(A=\frac{2x}{x+1}+\frac{1+2x}{x^2-1}=\frac{2x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}+\frac{1+2x}{x^2-1}=\frac{2x^2-2x}{x^2-1}+\frac{1+2x}{x^2-1}\)
\(=\frac{2x^2+1}{x^2-1}=\frac{2x^2-2+3}{x^2-1}=\frac{2\left(x^2-1\right)+3}{x^2-1}=\frac{2\left(x^2-1\right)}{x^2-1}+\frac{3}{x^2-1}=2+\frac{3}{x^2-1}\)
c) A nguyên khi và chỉ khi \(\frac{3}{x^2-1}\) nguyên
<=>3 chia hết cho x2-1
<=>\(x^2-1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
<=>\(x^2\in\left\{-2;0;2;4\right\}\)
Vì \(x^2\ge0\Rightarrow x^2\in\left\{0;2;4\right\}\)<=>\(x\in\left\{-2;0;\sqrt{2};2\right\}\)
Vì \(x\in Z\Rightarrow x\in\left\{-2;0;2\right\}\)
Vậy A nguyên khi \(x\in\left\{-2;0;2\right\}\)
a)A xác khi \(\hept{\begin{cases}x+1\ne0\\x^2-1\ne0\end{cases}\Rightarrow x\ne\left\{-1,1\right\}}\)
b) \(A=\frac{2x}{x+1}+\frac{1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x\left(x-1\right)+1+2x}{\left(x-1\right)\left(x+1\right)}=\frac{2x^2+1}{x^2-1}=2+\frac{3}{\left(x^2\right)-1}\)
c)x^2-1=U(3)={-3,-1,1,3}
x^2={-2,0,2,4}
x={-2,0,2}