ĐKXĐ: \(x\ne\pm2\)
a)\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+4}{x^2-4}=\frac{x+2}{\left(x-2\right)\left(x+2\right)}+\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+4}{x^2-4}\)
\(=\frac{x+2}{x^2-4}+\frac{x-2}{x^2-4}+\frac{x^2+4}{x^2-4}=\frac{x+2+x-2+x^2+4}{x^2-4}=\frac{x^2+2x+4}{x^2-4}=\frac{\left(x+1\right)^2+3}{x^2-4}\)
b) \(\left(x+1\right)^2\ge0\Rightarrow\left(x+1\right)^2+3\ge3>0\)
=> A<0 khi \(x^2-4< 0\Leftrightarrow x^2< 4\)
Vì \(x^2\ge0\Rightarrow0\le x^2< 4\Leftrightarrow-2< x< 2\)
Tại sao lại x khác -1 thì A<0 vì khi x=-1 thì A=-1<0 mà!