Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hồ Văn Đạt

cho biểu thức A = x+1/x-2 + x-1/x+2 + x^2+4x/4-x^2

a) rút gọn

b)Tính giá trị biểu thức khi x = 4

c) Tìm giá trị nguyên của x để A nhận giá trị nguyên dương

Edogawa Conan
20 tháng 12 2019 lúc 16:37

a) Ta có: A = \(\frac{x+1}{x-2}+\frac{x-1}{x+2}+\frac{x^2+4x}{4-x^2}\)

A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\frac{\left(x-1\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}-\frac{x^2+4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2+3x+2+x^2-3x+2-x^2-4x}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{x^2-4x+4}{\left(x-2\right)\left(x+2\right)}\)

A = \(\frac{\left(x-2\right)^2}{\left(x-2\right)\left(x+2\right)}=\frac{x-2}{x+2}\)

b) Với x = 4 => A = \(\frac{4-2}{4+2}=\frac{2}{8}=\frac{1}{4}\)

c) ĐKXĐ: \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\\4-x^2\ne0\end{cases}}\) <=> \(\hept{\begin{cases}x\ne2\\x\ne-2\\x\ne\pm2\end{cases}}\) <=> \(x\ne\pm2\)

Ta có: A = \(\frac{x-2}{x+2}=\frac{\left(x+2\right)-4}{x+2}=1-\frac{4}{x+2}\)

Để A  nhận giá trị nguyên dương <=> \(1-\frac{4}{x+2}\) nguyên dương

<=> \(-\frac{4}{x+2}\) nguyên dương <=> -4 \(⋮\)x + 2

 <=> x + 2 \(\in\)Ư(-4) = {1; -1; 2; -2; 4; -4}

Lập bảng: 

x + 2 1 -1 2 -2 4 -4
  x-1(tm)-3(tm)0(tm)-4(tm) 2(ktm)-6(tm)

Vậy ....

Khách vãng lai đã xóa

Các câu hỏi tương tự
vtth
Xem chi tiết
Someguyy
Xem chi tiết
Tiến Long
Xem chi tiết
Hứa Suất Trí
Xem chi tiết
lý gia huy
Xem chi tiết
Hoàng an
Xem chi tiết
My Nguyen Tra
Xem chi tiết
to tien cuong
Xem chi tiết
Nguyễn Thế Vinh
Xem chi tiết