Vì xyz = 1 nên x = y = z = 1
=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Vì xyz = 1 nên x = y = z = 1
=> \(A=\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}+\frac{1}{1.1+1+1}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)
Cho biết xyz=1. Tính giá trị P=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
Tính giá trị của biểu thức:\(A=\frac{x}{xy+x+1}+\frac{y}{y+1+yz}+\frac{z}{1+z+xz}\)
biết \(xyz=1\)
Cho \(x,y,z\)thỏa mãn\(xyz=1\). Tính giá trị biểu thức \(P=\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
cho biet xyz=1.tinh gia tri cua A=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)
a) Cho x, y, z và x - y - z = 0
Tính giá trị của biểu thức:
\(A=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)\)
b) Cho x, y, z thỏa mãn: xyz = 1
CMR:
\(\frac{1}{xy+x+1}+\frac{1}{yz+y+1}+\frac{1}{xyz+yz+1}=1\)
Cho xyz=1.Tính giá trị biểu thức P=\(\frac{1}{1+x+xy}\)+\(\frac{1}{1+y+yz}\)+\(\frac{1}{1+z+xz}\)
xyz=1
tính A=\(\frac{x}{xy+x+1}+\frac{y}{yz+y+1}+\frac{z}{xz+z+1}\)