A M A B = 3 8 ⇒ A M M B + A M = 3 8 + 3 ⇒ A M A B = 3 11
Đáp án: C
A M A B = 3 8 ⇒ A M M B + A M = 3 8 + 3 ⇒ A M A B = 3 11
Đáp án: C
cho các số hữu tỉ a,b,c,d thỏa mãn :a^2 +b^4 +c^6+d^8=1 và a^2016 +b^2017 +c^2018 + d^2019=1 .Tính \(M=a^3-a+3b^4-3b+5c^5-5c+7d^6-7d\)
1. CMR: ∀ n∈\(N^{\cdot}\)
a) \(A=5^n+2.3^{n-1}+1\text{⋮}8\)
b) \(B=3^{n+2}+4^{2n+1}\text{⋮}13\)
c) \(C=6^{2n}+3^{n+2}+3^n\text{⋮}11\)
d) \(D=1^n+2^n+5^n+8^n\text{⋮}8\)
2. \(CMR:\) \(1^{2002}+2^{2002}+...+2002^{2002}\text{⋮}11\)
3. a) cho a,b ∈Z, t/m:\(a^2+b^2\text{⋮}7\). \(CMR:a\text{⋮}7;b\text{⋮}7\)
b) \(CMR:\) Nếu \(a^2+b^2\text{⋮}21\) thì \(a^2+b^2\text{⋮}441\) (a,b ∈Z)
a)Cho a,b thuộc Z thỏa ( a^2-ab+b^2) chia hết 2. C/m (a^3+b^3) chia hế cho 8
b)Tìm hai số nguyên liên tiếp mà hiệu các bình phương của hai số đó bằng2013
c)Tìm các số nguyên n để 2013/((4n)^2-4n+3) có giá trị nguyên
d)Cho biết tồn tại hai số thực a,b khác 0 thỏa 1/a +-1/b=1/ab. Tính giá trị M= (a^3-b^3+1)/(a^2+b^2-1)
cho a b c d là các số hữu tỉ thỏa mãn a^2+b^4+c^6+d^8=1 và a^2016+b^2017+c^2018+d^2019=1. tính giá trị của m =a^3-a+3b^4-3b+5c^3-5c+7d^6-7d
1.Cho các số nguyên a,b,c thỏa mãn (a-b)^3+(b-c)^3+(c-a)^3=210. Tính A=/a-b/+/b-c/+/c-a/
2.Cho tam giác ABC vuông ở A. Lấy một điểm M bất kì tren cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt BA tại E.
a) C/m EA.EB=ED.EC
b) c/m khi M di chyển trên cạnh AC thì tổng BM.BD+CM.CA có giá trị không đổi.
c) Kẻ DH_I_BC(H thuộc BC). Gọi P;Q lần lượt là trung điểm của đoạn thẳng BH;DH. C/m CQ_I_PD
(bài này mik làm dk câu a rồi.mn giúp mik câu b với câu c với!)
3.Tìm các số nguyên a và b sao cho A(x)=x^4+ax^2+b chia hết cho B(x)=x^2+x+1
4.C/m với mọi n thuộc Z thì n^2+5n+16 không chia hết cho 169
5.Cho a,b,c>0 t/m a+b+c=1. c/m ab/(a+1)+bc/(b+1)+ca/(c+1)<=1/4
6. Tìm đa thức f(x) biết f(x) chia x+2 dư 10; chia x-2 dư 24; chia x^2-4 được thương là --5x và còn dư.
7. C/m a(b-c)(b+c-a)^2+c(a-b)(a+b-c)^2=b(a-c)(a+c-b)^2
8. Cho hình vuông ABCD trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ AH _I_ BF(H thuộc BF); AH cắt DC và BClaanf lượt tại M và N.
a) c/m AEMD là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. C/m AC=2EF
c) C/m 1/(AD^2)=1/(AM^2)+1/(AN^2)
cho a,b thuộc R thỏa mãn a2 +b2 +ab=a . C/M : 8/3<= a2 +b2 <=8
Cho 5 đoạn thẳng có độ dài lần lượt là : a = 2 , b = 3 , c = 4 , d = 6 và m = 8 .
Kết luận nào sau đây là sai ?
A. Hai đoạn thẳng a và c tỉ lệ với hai đoạn thẳng b và d | ||||
B. Hai đoạn thẳng a và b tỉ lệ với hai đoạn thẳng d và m | ||||
C. Hai đoạn thẳng b và c tỉ lệ với hai đoạn thẳng d và m | ||||
D. Hai đoạn thẳng a và b tỉ lệ với hai đoạn thẳng c và d Nếu a <= b và c < 0 thì :
|
1,Cho 4 số a,b,c,d thỏa mãn a+b+c+d = 0.
CMR: a^3+b^3+c^3=3(b+d)(ac-bd)
2, CMR:
a, n^4+6n^3+11n^2+6n chia hết cho 24 với mọi n thuộc Z
b,( m+1)(m+3)(m+5)(m+7)+15 chia hết cho m+6 với mọi m thuộc Z
Các bác giúp em với thứ 7 em phải nộp rồi
Câu 1: Cho số thực m. Chứng minh:
a) m-4<m-3
b) -2-m>-3-m
c) Nếu m-3>5 thì m+2>8
d) m2+2>=2
Câu 2: Cho 2 số a, b
a) So sánh a, b. Biết a-3>b-3
b) So sánh 2a và a+b. Biết a+1>b+1
Câu 3: Cho a>b và x>y. Chứng minh a+x=b+y
Câu 4: Cho a, b, c>0. Chứng minh: a/b+b/c>=2
Cho tứ giác ABCD, AC vuông góc với BD. Gọi M, N, P, Q lần lượt là trung điểm của AB, BC, CD, DA. CMR: MP= NQ
Bài 8: Cho a, b thuộc R thỏa mãn: a+ b+ab=8. Tìm GTNN của B= a^2+b^2
Bài 9: Cho a, b thuộc R thỏa mãn: a+b+ab=35. Tìm GTNN của: C= a^2+b^2
Bài 10: Tìm n để: (n thuộc N)
a) n^2+5
b) n^2-n+1 là số chính phương