Xét hiệu của hai phân thức sau:
\(\left(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}\right)-\left(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\right)=\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}-\frac{y^2}{x+y}-\frac{z^2}{y+z}-\frac{x^2}{z+x}\)
\(=\left(\frac{x^2}{x+y}-\frac{y^2}{x+y}\right)+\left(\frac{y^2}{y+z}-\frac{z^2}{y+z}\right)+\left(\frac{z^2}{z+x}-\frac{x^2}{z+x}\right)=x-y+y-z+z-x=0\)
Vì hiệu của chúng bằng \(0\) nên số bị trừ sẽ bằng số trừ, tức là:
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\)
Mà \(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2015\) (theo giả thiết)
Vậy, \(\frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}=2015\)
Vì hiệu của chúng bằng 0 nên số bị trừ sẽ bằng số trừ ,tức là:
x^2/x+y+y^2/y+z+z^2/z+x=y^2/x+y+z^2/y+z+x^2/z+x
Mà x^2/x+y+y^2/y+z+z^2/z+x=2015(giả thiết)
Vậy y^2/x+y+z^2/y+z+x^2/z+x=2015
2015 nha câu này ở vở ôn tập cuối tuần toán 8
tớ không biết ấn phân số nên tóm tắt ra là 2015
theo minh la2015 neu muon biet ro vui long trang vao vn.doc de biet them chi tiet
đây là phân thức đại số nên kết quả bằng 2015
\(\frac{x^2}{x+y}+\frac{y^2}{y+z}+\frac{z^2}{z+x}=2015\)
\( \frac{y^2}{x+y}+\frac{z^2}{y+z}+\frac{x^2}{z+x}\)
Vì hiệu của chúng bằng 0 nên số bị trừ sẽ bằng số trừ,tuc là
x^2/x+y+y^2/y+z+z^2/z+x=2015
vậy...