10a^2 + 6ab- 5ab - 3b^2=0 <=>
<=> (2a-b)(3a+5b)=0 <=>2a = b hoặc 3a = -5b(loại vi b>a>0)
Thay 2a = b vào vế trái ta có
\(\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=0+\frac{9}{5}=\frac{9}{5}\)
Vậy vế trái bằng vế phải đẳng thức được chứng minh
10a^2 + 6ab- 5ab - 3b^2=0 <=>
<=> (2a-b)(3a+5b)=0 <=>2a = b hoặc 3a = -5b(loại vi b>a>0)
Thay 2a = b vào vế trái ta có
\(\frac{2a-2a}{3a-2a}+\frac{5.2a-a}{3a+2a}=0+\frac{9}{5}=\frac{9}{5}\)
Vậy vế trái bằng vế phải đẳng thức được chứng minh
câu 1
a) Cho a ≥ 0, b ≥ 0. Chứng minh bất đẳng thức Cauchy:\(\frac{a+b}{2}\ge\sqrt{ab}\)
b) Cho a, b, c > 0. Chứng minh rằng:\(\frac{bc}{a}+\frac{ca}{b}+\frac{ab}{c}\ge a+b+c\)
c) Cho a, b > 0 và 3a + 5b = 12. Tìm giá trị lớn nhất của tích P = ab.
TÌm giá trị biểu thức \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
CMR: Với mọi a;b;c>0
\(\frac{2b+3c}{a+2b+3c}+\frac{2c+3a}{b+2c+3a}+\frac{2a+3b}{c+2a+3b}\ge\frac{5}{2}\)
Cho các số thực a, b, c > 0 thỏa mãn ab + bc + ca = 1.Chứng minh rằng:
\(\frac{a}{\left(3b+5c\right)^3}+\frac{b}{\left(3c+5a\right)^3}+\frac{c}{\left(3a+5b\right)^3}\ge\frac{9}{512}\)
Cho \(a,b,c>0\).Chứng minh \(\frac{a^2}{2a+3b}+\frac{b^2}{2b+3c}+\frac{c^2}{2c+3a}\ge\frac{a+b+c}{5}\)
Câu 1 : Cho a,b,c>0 thỏa mã ab+bc+ac=3. CMR : \(\frac{a}{2a^2+bc}+\frac{b}{2b^2+ac}+\frac{c}{2c^2+ab}\ge abc\)
Câu 2 : Cho a,b,c>0. CMR: \(\frac{2}{a}+\frac{6}{b}+\frac{9}{c}\ge\frac{8}{2a+b}+\frac{48}{3b+2c}+\frac{12}{c+3a}\)
Cho a>0, b>0, a khác b. Rút gọn
\(\frac{\left(\frac{a-b}{\sqrt{a}+\sqrt{b}}\right)^3+2a\sqrt{a}+b\sqrt{b}}{3a^2+3b\sqrt{ab}}+\frac{\sqrt{ab}-a}{a\sqrt{a}-b\sqrt{a}}\)
Chứng minh rằng với mọi a,b,c>0 ta có:
\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\le\frac{a+b+c}{6}\)
Cho a,b là các số dương. Chứng minh rằng: \(\frac{2a^2+3b^2}{2a^3+3b^3}+\frac{2b^2+3a^2}{2b^3+3a^3}\le\frac{4}{a+b}\)