Cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}\) Chứng minh B > 99,75
Cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+.....+\frac{200.202}{201^2}\) Chứng minh : B > 99,75
cho B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+....+\frac{200.202}{201^2}\)chứng minh B > 99,75
B = \(\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200\cdot202}{201^2}\)
Chứng minh B > 99,75.
\(A=\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\)
\(B=\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\)
a) So sánh A và B
b) Chứng minh A<133
\(A=\frac{1}{4}.\frac{3}{6}.\frac{5}{8}....\frac{43}{46}.\frac{45}{48}\)
\(B=\frac{2}{5}.\frac{4}{7}.\frac{6}{9}....\frac{44}{47}.\frac{46}{49}\)
a) So sánh A và B
b) Chứng minh A<133
Cho \(B=\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}\)Chứng minh: \(B>99,75\)
Cho B = \(\frac{8}{9}\)+ \(\frac{24}{25}\)+ \(\frac{48}{49}\)+... + \(\frac{200.2002}{201^2}\). Chứng minh : B > 99,75
Chứng minh rằng:
\(\frac{9}{5^2}+\frac{9}{11^2}+\frac{9}{17^2}+...+\frac{9}{305^2}< \frac{3}{4} \)
\(C=\frac{11}{9}+\frac{18}{16}+\frac{27}{25}+...+\frac{1766}{1764}\)
Chứng minh rằng:\(40\frac{20}{43}< C< 40\frac{20}{21}\)
\(D=\frac{8}{9}+\frac{24}{25}+\frac{48}{49}+...+\frac{200.202}{201^2}>99,75\)
\(E=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{24}{2500}>48\)
Giải nhanh trong chiều này giùm mình nhé!