Tính các tổng sau:
a) \(\frac{1}{7}+\frac{1}{7^2}+\frac{1}{7^3}+...+\frac{1}{7^{100}}.\)
b) \(-\frac{4}{5}+\frac{4}{5^2}-\frac{4}{5^3}+...+\frac{4}{5^{200}}.\)
c)\(\frac{-1}{3}+\frac{1}{3^2}-\frac{1}{3^3}+...+\frac{1}{3^{100}}-\frac{1}{3^{101}}\)
RÚT GỌN
\(A=\frac{12+\frac{12}{7}-\frac{12}{25}-\frac{12}{71}}{4+\frac{4}{7}-\frac{4}{25}-\frac{4}{71}}:\)\(\frac{3+\frac{3}{13}+\frac{3}{15}+\frac{3}{15}+\frac{3}{101}}{5+\frac{5}{13}+\frac{5}{15}+\frac{5}{101}}\)
\(B=\frac{\frac{1}{51}+\frac{1}{52}+\frac{1}{53}+......+\frac{1}{100}}{\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+.......+\frac{1}{99.100}}\)
Tính : \(K=\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+\frac{1}{3^4}\right).3^5+\left(\frac{1}{3^5}+\frac{1}{3^6}+\frac{1}{3^7}+\frac{1}{3^8}.3^9\right)+...+\left(\frac{1}{3^{97}}+\frac{1}{3^{98}}+\frac{1}{3^{99}}+\frac{1}{3^{100}}\right).3^{101}\)
cho \(M=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}....\frac{99}{100};N=\frac{2}{3}.\frac{4}{5}.\frac{6}{7}....\frac{100}{101}\)
a/ so sánh M và N
b/ tính M nhân N
c/ CMR : M < 1 / 10
CMR:
a)\(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^7}\) <1
b)\(\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+\frac{4}{4^4}+....+\frac{101}{3^{101}}\),<3/4
nhanh nhé
CMR:
a, \(100-\left(1+\frac{1}{2}+\frac{1}{3}+..+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+..+\frac{99}{100}\)
b, \(\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{199}\right)-\left(\frac{1}{2}+\frac{1}{4}+..+\frac{1}{200}\right)=\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}\)
Giải nhanh giùm mình nhé!!!!!!!!!!!!!!
A=\(\frac{-3}{5}+\left(\frac{-2}{5}+2\right)\)
\(B=\left(6-2\frac{4}{5}\right)\times3\frac{1}{8}-1\frac{3}{5}=\frac{1}{4}\)
Tính nhanh
\(A=\frac{5}{1\times7}+\frac{5}{4\times7}+\frac{5}{7\times10}+......+\frac{5}{101\times104}\)
CMR: A=B
A=\(\frac{\left(3\frac{2}{15}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\)
B=\(\frac{1,2:\left(1\frac{1}{5}.1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
a) CMR: \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{3}{4}\)
b) CMR: \(\frac{1}{3^2}+\frac{1}{5^2}+\frac{1}{7^2}+...+\frac{1}{\left(2n+1\right)^2}< \frac{1}{4}\)