b+c=10 => b=10-c
Ta có:
(10a+b)(10a+c)
\(=\left(10a+10-c\right)\left(10a+c\right)\)
\(=100a^2+10ac+100a+10c-10ac-c^2\)
\(=100a^2+100a+10c-c^2\) (1)
Ta lại có:
\(100a\left(a+1\right)+bc=100a\left(a+1\right)+\left(10-c\right)c\)
\(=100a^2+100a+10c-c^2\) (2)
Từ (1)(2) suy ra (10a+b)(10a+c)=100a(a+1)+bc
Ta có:
\(62.68=\left(10.6+2\right)\left(10.6+8\right)=100.6.\left(6+1\right)+2.8=4216\)
\(43.47=\left(10.4+3\right)\left(10.4+7\right)=100.4.\left(4+1\right)+3.7=2021\)