Cho a,b,c thỏa mãn abc khác 0 và 1/a+1/b+1/c=0. Tính B=(a+b)(b+c)(c+a)/abc. Ai giải giúp mình vs thanks nhiều
Cho a, b, x là các số thực đôi khác nhau và khác 0 thỏa mãn:
\(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\)
Chứng minh rằng abc= 1 hoặc abc= -1
Cho a,b,c thỏa mãn điều kiện ab + bc + ca = abc avf a + b + c = 1 . CMR : (a-1)(b-1)(c-1) = 0
Cho a,b,c thỏa mãn 1/a+1/b+1/c=1/a+b+c . CMR: a+b=0 hoặc b+c=0 hoặc c+a=0
Cho các số a, b, c khác 0 thỏa mãn abc khác 1 và -1 và (ab+1)/b+(bc+1)/c+(ca+1)/a. cm a=b=c
cho a;b;c là 3 số hữu tỉ từng đôi một khác nhau và khác 0
biết \(a+\frac{1}{b}=b+\frac{1}{c}=c+\frac{1}{a}\) cmr: hoặc abc=1 hoặc abc=-1
Cho 3 số thực khác 0 thỏa mãn :
abc=20123 và 20122(1/a+1/b+1/c)<a+b+c
CMR trong 3 số có một số lớn hơn 2012
cho a,b,c dương thỏa mãn: abc=1 CMR: 1/a+b+1 + 1/b+c+1 + 1/a+c+1 <= 1