Cho 2002 số tự nhiên,trong đó có 4 số bất kì trong chúng đều lập nên 1 tỉ lệ thức . Chứng minh rằng trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau
1. Một cửa hàng có 3 tấm vải, dài tổng cộng 126m. Sau khi họ bán đi \(\frac{1}{2}\)tấm vải thứ nhất, \(\frac{2}{3}\)tấm vải thứ hai và \(\frac{3}{4}\)tấm vải thứ ba, thì số vải còn lại ở ba tấm bằng nhau. Hãy tính chiều dài của ba tấm vải lúc ban đầu.
2. Có 3 tủ sách đựng tất cả 2250 cuốn sách. Nếu chuyển 100 cuốn từ tủ thứ nhất sang tủ thứ ba thì số sách ở tủ thứ 1, thứ 2, thứ 3 tỉ lệ với 16,15,14. Hỏi trước khi chuyển thì mỗi tủ có bao nhiêu cuốn sách?
3. Ba xí nghiệp cùng xây dựng chung 1 cây cầu hết 38 triệu đồng. Xí nghiệp 1 có 40 xe ở cách cầu 1,5 km, xí nghiệp 2 có 20 xe ở cách cầu 3 km, xí nghiệp 3 có 30 xe cách cầu 1 km. Hoi3moi64 xí nghiệp phải trả cho việc xây dựng cầu bao nhiêu tiền, biết rằng số tiền phải trả tỉ lệ thuận với số xe và tỉ lệ nghịch với khoảng cách từ xí nghiệp đến cầu?
4. Số hs 4 khối 6, 7, 8, 9 tỉ lệ với các số 9; 8; 7; 6. Biết rằng số hs khối 9 ít hơn số hs khối 7 là 70 hs. Tính số hs của mỗi khối.
5. Theo hợp đồng, 2 tổ sản xuất chia lãi với nhau theo tỉ lệ 3 : 5. Hỏi mỗi tổ được chia bao nhiêu nếu tổng số lãi là 12 800 000 đồng.
6. Tính độ dài các cạnh của 1 tam giác biết chu vi là 22 cm và các cạnh tỉ lệ với các số 2; 4; 5.
Cho 2002 số tự nhiên, trong đó cứ 4 số bất kỳ trong chúng đều lập nên một tỉ lệ thức. Chứng minh rằng trong các số đó luôn luôn tồn tại ít nhất 501 số bằng nhau
chia số M thành ba phần tỉ lệ nghịch vwois 3,5,6. Biết rằng tổng các lập phương của ba phần đó là 10728. Tìm số M
a) Chứng tỏ rằng \(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không là số tự nhiên với mọi n thuộc N , n > 2.
b) Ba lớp 7A,7B,7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó chia theo tỉ lệ 4:5:6 nên có một lớp công nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua.
Đăng lung tung tui tích sai 3 lần mỗi ngày
tìm số có ba chữ số biết rằng số đó chia hết cho 18 và các chữ số tỉ lệ với 1 : 2 :3
Bài 1: Ba phân số tối giản có tổng bằng \(\frac{213}{70}\)các tử của chúng có tỉ lệ vs 3;4;5, các mẫu của chúng tỉ lệ vs 5;1;2.
Tìm 3 phân số đó
Bài 2: Tìm số tự nhiên n có hai chữ số biết rằng 2 số 2n+1 và 3n+1 đồng thời là số chính phương.
Bài 3: Tìm 3 số tự nhiên a;b;c biết \(\frac{3a\:-\:2b}{5}=\frac{2c\:\:-\:5a}{3}=\frac{5b\:-\:3c}{2}\)và a + b + c = -50
Tìm một số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với 1, 2, 3.
Tổng của 3 phân số tối giản là \(1\frac{17}{20}\). Tử số của phân số thứ nhất, thứ hai, thứ 3 tỉ lệ với 3; 7; 11 và mẫu của 3 phân số theo thứ tự tỉ lệ với 10; 20; 40. Tìm 3 phân số đó