Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
danh Vô

cho ba số thực a,b,c thỏa mãn \(a\ge1:b\ge4;c\ge9\)

Tìm giá trị lớn nhất của biếu thức

\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}\)

Nguyễn Hưng Phát
18 tháng 12 2018 lúc 21:08

Xét a=1,b=4,c=9 thì P=0

Xét \(a>1,b>4,c>9\)

Áp dụng BĐT AM-GM ta có:

\(P=\frac{bc.\sqrt{a-1}.1+\frac{ca}{2}.\sqrt{b-4}.2+\frac{ab}{3}.\sqrt{c-9}.3}{abc}\)

\(\le\frac{bc.\frac{a-1+1}{2}+\frac{ca}{2}.\frac{b-4+4}{2}+\frac{ab}{3}.\frac{c-9+9}{2}}{abc}\)

\(=\frac{\frac{abc}{2}+\frac{abc}{4}+\frac{abc}{6}}{abc}=\frac{\frac{11}{12}abc}{abc}=\frac{11}{12}\)

Nên GTLN của P là \(\frac{11}{12}\) đạt được khi \(\hept{\begin{cases}\sqrt{a-1}=1\\\sqrt{b-4}=2\\\sqrt{c-9}=3\end{cases}\Leftrightarrow}\hept{\begin{cases}a-1=1\\b-4=4\\c-9=9\end{cases}\Leftrightarrow}\hept{\begin{cases}a=2\\b=8\\c=18\end{cases}}\)

Tran Le Khanh Linh
1 tháng 7 2020 lúc 19:42

\(P=\frac{bc\sqrt{a-1}+ca\sqrt{b-4}+ab\sqrt{c-9}}{abc}=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\)

Vì \(a\ge1;b\ge4;c\ge9\). Áp dụng BĐT Cosi cho các số dương ta được:

\(\sqrt{a-1}=1\cdot\sqrt{a-1}\le\frac{1+a-1}{2}=\frac{a}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{a-1}=1\Leftrightarrow a=2\)

\(\sqrt{b-4}=2\cdot\sqrt{b-4}\le\frac{4+b-4}{2}=\frac{b}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{b-4}=2\Leftrightarrow b=8\)

\(\sqrt{c-9}=3\cdot\sqrt{c-9}\le\frac{9+c-9}{2}=\frac{c}{2}\). Dấu "=" xảy ra \(\Leftrightarrow\sqrt{c-9}=3\Leftrightarrow c=18\)

\(\Rightarrow P=\frac{\sqrt{a-1}}{a}+\frac{\sqrt{b-4}}{b}+\frac{\sqrt{c-9}}{c}\le\frac{a}{2a}+\frac{b}{2b}+\frac{c}{2c}=\frac{3}{2}\)

Vậy GTLN của P\(=\frac{3}{2}\Leftrightarrow a=2;b=8;c=18\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
 Huyền Trang
Xem chi tiết
Gia Linh Trần
Xem chi tiết
Nguyễn Hồng Hương
Xem chi tiết
lê thị thu hà
Xem chi tiết
Xem chi tiết
Phạm Hoàng Minh
Xem chi tiết
Nguyễn Tuấn Anh
Xem chi tiết
Nguyễn Minh Nhật
Xem chi tiết
Linh Thùy
Xem chi tiết