\(a^2+1\ge2a\) ; \(b^2+1\ge2b\) ; \(c^2+1\ge2c\)
\(\Rightarrow a^2+b^2+c^2+3\ge2\left(a+b+c\right)\)
\(\Rightarrow a^2+b^2+c^2\ge\left(a+b+c\right)+\left(a+b+c\right)-3\)
\(\Rightarrow a^2+b^2+c^2\ge a+b+c+3\sqrt[3]{abc}-3=a+b+c\)
Dấu "=" xảy ra khi \(a=b=c=1\)